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Abstract

If agents in workhorse business cycle models with financial frictions can index contracts to ob-

servable aggregates, they share aggregate financial risk (almost) perfectly, eliminating the financial

accelerator mechanism. I show that in the standard specification of the Bernanke, Gertler, and

Gilchrist (1999) framework with TFP shocks this happens because: i) borrowers and lenders are

implicitly assumed to have identical, logarithmic utility, and ii) the representative lender’s human

wealth comoves closely with aggregate financial wealth. Non-state-contingent borrowing rates can

arise optimally if i) lenders’ risk aversion is increased to plausible degrees, or ii) at identical prefer-

ences, lenders face uninsurable countercyclical idiosyncratic risk in labor productivity.
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1 Introduction

Recent developments in the literature on macro-financial DSGE models have brought to light the fact

that in several conventional frameworks, the relevance of financial frictions in aggregate fluctuations is

eliminated if agents are allowed to share aggregate risk embedded in returns to risky assets optimally.

One such workhorse model is that set up by Bernanke et al. (1999), henceforth BGG, building on earlier

work by Bernanke and Gertler (1989) and Carlstrom and Fuerst (1997). It features capital-managing

entrepreneurs and households who provide funding to the former. A costly state verification (CSV)

friction emanates from idiosyncratic shocks to entrepreneurs’ held capital, as formalized by Townsend

(1979). The presence of such a financial friction gives rise to a financial accelerator mechanism which

generates amplification and added persistence of aggregate shocks, compared to a frictionless real business

cycle framework. A crucial nuance in this mechanism is the exogenously imposed constraint that the

lenders must, on aggregate, receive a predetermined return. That is, the lenders’ return does not respond

to realizations of aggregate shocks, observed at the time of repayment, and the borrowing entrepreneurs

bear all aggregate financial risk.
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Financial Frictions”. I am grateful to Ricardo Lagos for his invaluable advice and support, and to Mark Gertler and Simon
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Francisco Roldan, Bálint Szőke, and the participants of the 11th Nordic Summer Symposium in Macroeconomics and
seminars at NYU and the Bank of Estonia for helpful comments. Any errors that remain are my own. Financial support
from the Macro Financial Modeling Initiative is gratefully acknowledged.
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This assumption regarding the predeterminacy of returns has drawn criticism, for example by Chari

(2003). There is no explicitly modelled reason why in the presence of a risk-averse lender and a borrower

with time-varying investment opportunities the counterparties cannot engage in mutual insurance against

aggregate risk. This could be achieved by agreeing on a lender’s return which is indexed to observable

outcomes to be realized in the macroeconomy. Carlstrom et al. (2016) (henceforth, CFP) formalize

this idea in the BGG framework. They show that, in the privately optimal one period contract, the ex

post return to the lenders is indexed one-for-one to the return on entrepreneurial capital, adjusted for

fluctuations in the borrower’s and lender’s marginal valuations of wealth.

The fact that borrowing entrepreneurs’ ex post liabilities adjust to capital return shocks significantly

dampens financial accelerator dynamics. In the non-state-contingent lender return case employed by

BGG, a positive aggregate shock to the return on capital, for example due to increased productivity,

leads to a significant increase in entrepreneurs’ net worth because of their predetermined liabilities.

The relatively higher net worth decreases entrepreneurial leverage, increases their ability to hold assets,

boosting asset prices which feed into further net worth and investment increases – the financial accelerator

mechanism.

However, if lender returns are indexed to capital returns, and possibly other observables, there is

sharing of aggregate financial risk between the borrower and lender. A positive shock leads to an

increase in ex post entrepreneurial liabilities, a smaller increase in net worth, and a dampened drop, if

any, in leverage. This is exactly the mechanism at work in the treatment of CFP. Similar ideas have been

presented by Krishnamurthy (2003) in a stylized three period model with borrowing contraints in the

spirit of Kiyotaki and Moore (1997), and by Di Tella (2017) in the infinite horizon framework studied

by Brunnermeier and Sannikov (2014). A key implication for the dynamics of borrowers’/entrepreneurs’

balance sheets in all these frameworks, compared to a contract with predetermined lender returns, is that

fluctuations in entrepreneurial leverage should be minimal. Or equivalently, the magnitude of relative

fluctuations in entrepreneurial net worth should be close to equal to those in held assets, and not amplified

by leverage.

A descriptive summary of aggregate time-series data on US firms’ balance sheets demonstrates a

considerable degree of volatility.1 For a simple illustration, Figure 1 displays quarterly aggregate nonfi-

nancial business balance sheet data from the Federal Reserve Board Flow of Funds Accounts. It graphs

the HP-filtered cyclical components of nonfinancial firms’ net worth and leverage, alongside that of gross

value added (GVA) in the nonfarm business sector – all in logs, for the period 1976Q1–2015Q3.2 As is

evident, aggregate non-financial sector leverage exhibits non-negligible countercyclicality over the busi-

ness cycle. And strikingly, since the 1980s, the unconditional second moments of the cyclical components

of the balance sheet variables have seemed to drift farther from the implications of privately optimal

aggregate risk sharing discussed above. Increased volatility in US firms’ balance sheet variables has been

pointed out in earlier work by Fuentes-Albero (2016). This finding becomes the more intriguing if one

were to expect that the rapid development of financial markets and instruments during this period should

have made aggregate state dependent borrowing contracts and privately optimal risk sharing more easily

1To be more precise in the labeling between model and data, one could think of entrepreneurial wealth in the model
as inside equity, and the entrepreneurs’ external financing as the sum of outside equity and debt financing. The degree
of external finance return indexation to the return on assets then mirrors the relative magnitudes of outside equity and
debt. In the model’s solution, to a first order, this degree of indexation is constant over time, implying a constant ratio of
outside equity to external finance. As long as this ratio implied by the model is less than 1 (i.e. external financing is not
fully in the form of outside equity), one can easily establish a positive relation between leverage in model ≡ assets

inside equity

and leverage in data ≡ assets
equity

.
2To capture nonfinancial activities, I measure assets as Nonfinancial Assets and debt as the sum of Loans and Debt

Securities – all measured at market values. The conclusions are virtually unchanged when simply using Total Assets
and Total Liabilities instead of nonfinancial assets and debt. All of these statements follow also for considering only the
nonfinancial corporate business sector.
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implementable. For example, regarding the management of interest rate risks, the market for interest

rate swaps emerged in the early 1980s and grew rapidly during the decade (Saunders, 1999). And all this

happened during a time of lower volatility in the real economy, well-documented as the Great Moderation

and evident in the fluctuations of GVA.
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Figure 1: Log-deviations from HP-trend of gross value added in the US non-farm business sector, non-
financial corporate net worth and leverage. HP-filter smoothing parameter 1,600. Data: FOFA, NIPA-
BEA.
Assets measured as Nonfinancial Assets (FOFA Tables B.103 and B.104, line 2), debt as the sum of Loans (FOFA Tables

B.103 and B.104, lines 30 and 27, respectively) and Debt Securities (FOFA Table.103, line 26) – all measured at market

values. Net worth = Assets −Debt , Leverage = Assets/Net worth. GVA measure from NIPA-BEA Table 1.3.5 line 3. All

variables deflated by the implicit price index for the nonfarm business sector (NIPA-BEA Table 1.3.4, line 3).

Explaining the observed changes in balance sheet dynamics is beyond the scope of this paper. It

is nontheless clear that significant fluctuations in the net worth and leverage of non-financial firms

are a prevalent phenomenon in the US economy. Also, these fluctuations are synchronized with the

business cycle, exactly like the basic financial accelerator mechanism under non-state-contingent debt

would predict.3 And as demonstrated for example in the work by Giroud and Mueller (2017), the

health of non-financial firms’ balance sheets had significant relevance for real activity during the Great

Recession.

In this paper, I pursue the idea that non-aggregate-state-contingent lender returns, and the implied

countercyclical fluctuations in entrepreneurial leverage might be the outcome of privately optimal aggre-

gate risk sharing between households and entrepreneurs in the BGG framework. A slight reformulation

of the borrowing entrepreneurs’ problem and preferences allows to establish that, to a first order, the

conventional BGG-CFP assumption of individual entrepreneurs with linear utility consuming a constant

fraction of wealth is equivalent to assuming that there is a representative entrepreneur who receives

logarithmic utility from consumption and owns a continuum of firms, each running individual projects

subject to limited liability and firm-specific risk.4

3The correlation between the above graphed GVA and leverage cyclical components is -0.48 in the sample post-1984, a
commonly estimated structural break date for the Great Moderation, and -0.33 when only considering data up to 2007Q4
to eliminate the effect of the Great Recession.

4Similarly to CFP, Dmitriev and Hoddenbagh (2017) analyze optimal contracting in the BGG framework and consider
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This establishes that by assuming logarithmic utility from consumption for the representative lender,

as BGG and CFP do, one is effectively studying a risk-sharing problem between two agents with identical

preferences over consumption. While being a valid theoretical benchmark, it also demonstrates that if one

were to instead consider the conventional BGG specification with households that do not have logarithmic

utility, the high degree of sharing aggregate financial risk found by CFP might not necessarily follow.

Relatively more aggregate risk would trivially be taken on by agents with lower aversion to fluctuations in

consumption. To shed light on this issue, I consider households with conventional Epstein and Zin (1989)

preferences and compute under which values of risk aversion and intertemporal elasticity of substitution

does the implied optimal one-period financial contract yield non-contingent borrowing rates in response

to persistent yet stationary total factor productivity shocks. Under the calibration employed by CFP,

this happens with a household risk aversion parameter of 13.2 and intertemporal elasticity parameter of

1.0, or CRRA utility with risk aversion of 5.92, for example.5 Under a close to unit root TFP process,

these numbers can be significantly smaller.

In addition to the agents’ preferences affecting their optimal sharing of aggregate financial risk, also

their exposure to aggregate risk through other sources of wealth matters. In the specification used by

CFP, entrepreneurs’ total wealth equals their financial wealth while the representative household is also

endowed with human wealth. With logarithmic utility requiring optimal consumption to be a constant

fraction of one’s total wealth, optimal risk sharing between households and entrepreneurs effectively

requires sharing financial returns in a way that works to neutralize fluctuations in human wealth. That

is, for any positive shock to households’ human wealth, they should cede more of their financial returns to

the entrepreneurs. With relative fluctuations in aggregate financial wealth and human wealth comoving

closely in response to TFP shocks, the agents end up sharing realized financial returns close to equally.

Given that idiosyncratic shocks to human wealth are conceivably less diversifiable than the idiosyn-

cratic risk embedded in owning individual assets or financing entrepreneurial projects, I also consider

households’ countercyclical uninsurable idiosyncratic risk as an effective source of increased risk aversion.

I do so by introducing uninsurable household risk in the model, emanating from shocks to individual

labor productivity. In the asset pricing literature, the introduction of countercyclical idiosyncratic risk is

a common way of increasing agents’ effective risk aversion towards aggregate fluctuations.6 This risk will

separate individual households’ consumption from aggregate human wealth fluctuations and generate a

force towards less financial risk sharing in the model, even when borrowers and lenders have identical

expected utility preferences over consumption.

To study the relevance of idiosyncratic lender risk, I build on the approach by Constantinides and

Duffie (1996) and construct a tractable no-trade equilibrium in which households’ consumption exhibits

rich heterogeneity brought about by shocks to their idiosyncratic labor productivity. By specifying that

the variance of these idiosyncratic shocks is time-varying and moves in response to any aggregate shocks

affecting the economy, one can study the cyclical properties of idiosyncratic lender risk required to ensure

the optimality of financial contracts in which the lender does not take on any aggregate financial risk

brought about by the shocks. While the framework allows to generate non-state-contingency of lender

returns in response to various aggregate shocks and at varying degrees of persistence in idiosyncratic risk,

my main analysis focuses on a real economy with aggregate TFP shocks. I find that when the variance

of idiosyncratic shocks is assumed to be persistent, then in response to a 1% drop in aggregate TFP the

varying degrees of entrepreneurial risk aversion. However, in their formulation, entrepreneurs are assumed to only consume
when they die, which cannot be optimal for an agent that is not risk neutral. Thus, their underlying entrepreneurial
preference structure is different from the one in this paper.

5To be precise, one must be careful with definitions of risk aversion when agents can vary labor supply in response to
shocks to wealth, as is the case in the BGG model. See Swanson (2015) and Section 3.1 for more.

6The work of Mankiw (1986), Constantinides and Duffie (1996), Krusell and Smith (1997), Storesletten et al. (2007),
Schmidt (2016), Constantinides and Ghosh (2017) are a few prominent examples.
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cross-sectional standard deviation in quarterly labor productivity growth would have to increase by about

7.5% – fluctuations conformable with empirical findings on the cyclicality of cross-sectional heterogeneity

in labor earnings growth, e.g. see Storesletten et al. (2004). In an extension with nominal rigidities, I

in addition study monetary policy and capital quality shocks and find that again, the countercyclical

variation in labor risk required for the BGG contract to be optimal is of realistic magnitudes.

The rest of the paper is organized as follows. Section 2 describes the environment with a representative

household and entrepreneur, defines the competitive equilibrium and discusses some properties of optimal

risk sharing. In Section 3, I calibrate the model and analyze optimal risk sharing for various household

preferences in a real business cycle framework with TFP shocks. Section 4 extends the framework to allow

for household heterogeneity and labor productivity risk and defines the corresponding competitive no-

trade equilibrium. In Section 5, I calibrate the idiosyncratic risk features of this framework and analyze

the implications for aggregate risk sharing and aggregate dynamics, also considering an extension with

nominal rigidities. Section 6 concludes.

2 The Benchmark Representative Household Model

2.1 The Environment

For comparability with earlier work in the literature, the framework of the model environment closely

follows the treatment of BGG and CFP in most parts. Time in the model is discrete and infinite. The

model features two central types of agents, called households and entrepreneurs – a unit mass of each.

For the purposes of Sections 2 and 3, there is no heterogeneity inside either of the two groups of agents,

so I will focus on a representative household and a representative entrepreneur. There is also a unit

mass of ”firms” indexed by j ∈ [0, 1], new capital producers, a representative financial intermediary and

a representative final goods producer, all discussed below.

The representative household is infinitely-lived, has time discount factor β and labor-augmented

Epstein-Zin preferences. It consumes the final good and sells labor in competitive markets. The household

saves in period t by depositing savings in a financial intermediary. These deposits yield gross real returns

Rdt+1 in t + 1. The returns are not predetermined in t and are realized at t + 1, possibly depending on

aggregate shocks.

As in BGG and CFP, the representative financial intermediary accepts deposits from households

and extends loans, between t and t + 1, to the continuum of firms. The intermediary is effectively a

pass-through entity that diversifies all idiosyncratic risk arising from lending to firms hit with individual

shocks. Yet aggregate risk on each extended loan, and on the whole loan portfolio remains. As CFP, I

assume that there is free-entry into the financial intermediation market and gross returns to the depositors

cannot be negative. This implies that in equilibrium, the gross real returns on households’ deposits, Rdt+1

will equal the returns on the intermediary’s loan portfolio.7

The representative entrepreneur is also infinitely lived, with time discount factor βe. In the spirit of

BGG, it is the only agent assumed to participate in the market for direct ownership (inside equity) of

firms. The entrepreneur consumes dividends paid by the firms and it is restricted from participating in

any other financial markets. Otherwise it might be able to undo the financial frictions faced by the firms

it owns. As assumed by CFP, the representative entrepreneur is not endowed with any labor.

7Alternatively, one can assume that the households own the financial intermediary and provide frictionless equity
financing to arrive at identical equilibrium conditions.
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Firm j maximizes its value to shareholders by investing in productive capital. Firms are assumed

to be the only entities who can hold capital between periods t and t + 1. At the end of each period,

they purchase physical capital, financed by their accumulated wealth, referred to as net worth, and

external financing provided by the financial intermediary. At the beginning of period t + 1 each firm’s

capital holdings Kj
t+1 are scaled by an idiosyncratic shock ωjt+1 which is observed by the firm, but by

the lender only if a monitoring cost is incurred. This idiosyncratic shock is i.i.d across time and firms

and independent of any aggregate realizations, with density f(ω), cumulative distribution F (ω) and a

mean of one. Let Rkt+1 denote the aggregate gross return to a unit of the final good invested in capital,

meaning the average return in the cross-section of firms. Rkt+1 is perfectly observed by all agents in the

economy. Then, the total return to a unit of the final good invested in firm j’s capital project at time t

is ωjt+1R
k
t+1.8 To be more precise:

Rkt+1 ≡
rt+1 + (1− δ)Qt+1

Qt
(1)

where rt+1 is the rental rate on capital, δ the depreciation rate and Qt+1 the relative price of capital in

t+ 1.

As is conventional in this line of models starting with Carlstrom and Fuerst (1997), I assume that

there is enough inter-period anonymity in financial markets that only one-period contracts between the

firms and the intermediary are feasible. Firms derive returns to capital from capital gains in the price

of capital when selling it and renting it out to a representative final goods producer, as evident in the

definition of Rkt+1 above. These returns are then used to cover any payments previously contracted to be

made to the lender. Note that because of constant returns to scale in the final goods production function,

one can equivalently assume that the firms themselves have access to the production technology, hire

labor and combine it with their capital to produce output. In any case, what matters is that ωkt+1R
k
t+1

is the return to a unit of final good invested in capital by entrepreneur j.

As in BGG, I assume that monitoring costs are a proportion µ of the realized gross payoff to a

given firm’s capital: µωjt+1R
k
t+1QtK

j
t+1. Also, firms have limited liability in that each individual firm’s

project cannot make payouts in excess of the proceeds ωjt+1R
k
t+1QtK

j
t+1. That is, even though the firm

is owned by an entrepreneur who could inject equity into firm j, equity injections or dividend payments

to the owner can only be made after the payments with the lender have been settled. This assumption

renders each individual contracting problem identical to that in BGG and CFP. The firms are assumed

to liquidate all their capital and all capital must be repurchased. This assumption dates back to BGG

who make it to ensure that agency problems affect the entire capital stock and not just the marginal

investment. Finally, as is a common assumption in the literature to prevent the firms from growing out

of their financial constraints and become self-financing in the long run, I assume that βe < β.

There is a representative final goods producer who runs a Cobb-Douglas production function in

aggregate labor Lt and capital Kt, producing AtK
α
t L

1−α
t . It rents capital from firms for rental rate rt,

and labor from the household for wage rate Wt, both in competitive markets. At is a TFP shock that

follows a stationary AR(1) process in logs. It is the only source of aggregate uncertainty in the baseline

model and its realization is publicly observed at the beginning of period t.

The household also owns competitive new capital producers who produce new capital subject to

8Equivalently, to stay in line with BGG and CFP’s narrative of a continuum of heterogeneous entrepreneurs doing
the investing in capital subject to financial frictions, a previous version of this paper instead considered a ”family” of
entrepreneurs j ∈ [0, 1] each operating their own projects, yet perfectly sharing the idiosyncratic risk arising from their
projects. I choose the framing of a continuum of firms held by a representative owner as it is more natural in light of the
literature on heterogeneous firms and does not rely on constructs such as the ”family of entrepreneurs”.
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adjustment costs and sell it to firms. Following CFP, they take Itϑ
(
It
Iss

)
units of the final good and

transform these into It investment goods, i.e. gross capital investment. ϑ is convex and Iss is the steady

state level of gross investment. These investment goods are sold at price Qt. I make the standard

assumptions that ϑ(1) = 1, ϑ′(1) = 0 and ϑ′′(1) = φQ. This normalizes the capital price in steady state

to 1 and guarantees that at steady state, the elasticity of the capital price to It is φQ, a key calibration

target. New capital producers earn possibly non-zero profits in equilibrium, paid to households, whereas

steady state profits are zero.

2.2 Equilibrium

In this section, I present the agents’ problems and derive their equilibrium optimality conditions.

2.2.1 Households

The representative household maximizes lifetime utility of streams of consumption Ct and hours worked

Lt:

Vt(dt) = max
Ct,Lt,dt+1

{
(1− β)u(Ct, Lt) + βEt

[
Vt+1(dt+1)1−ξ] 1− 1

ψ
1−ξ

} 1

1− 1
ψ

(2)

subject to the budget constraint

Ct + dt+1 ≤WtLt +Rdt dt + ΠI
t (3)

where dt+1 denotes the household’s choice of deposits saved in the intermediary, and ΠI
t are profits of

new capital producers. Although I consider recursive equilibria, for brevity of notation, I assume that

the aggregate state is encompassed by allowing for an aggregate state contingent value function Vt.

Following Uhlig (2010), I assume u(C,L) = [CΦ(L)]
1− 1

ψ , where Φ is positive, thrice differentiable,

decreasing and concave. These preferences are consistent with long run growth and give flexibility in

calibrating the elasticity of labor supply. Given this, the household’s first order necessary conditions for

labor supply and deposits are then:

Ct

[
−Φ′(Lt)

Φ(Lt)

]
= Wt (4)

1 = Et
[
Mt+1R

d
t+1

]
(5)

with Mt+1 ≡ β
(
Ct+1

Ct

)− 1
ψ

 Vt+1

Et
[
V1−ξ
t+1

] 1
1−ξ


1
ψ−ξ (

Φ(Lt+1)

Φ(Lt)

)1− 1
ψ

(6)

2.2.2 Entrepreneurs

The representative entrepreneur maximizes its lifetime utility over streams of consumption Cet :

Vet
({

njt

}
j∈[0,1]

)
= max
Cet ,{n

j
t+1}j

{
Ũ(Cet ) + βeEt

[
V et+1

({
njt+1

}
j

)]}

subject to the budget constraint

Cet +

∫ 1

0

qjtn
j
t+1dj ≤

∫ 1

0

(
qjt + divjt

)
njtdj
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where njt+1 denotes the share of firm j’s net worth acquired by the entrepreneur at the end of period t,

divjt are the dividends paid by firm j in t, and qjt is the time t ex-dividend price of firm j’s net worth.

Ũ(C) is a standard CRRA momentary utility function, set to the specific case of log-utility in what is

to follow

The entrepreneur’s first order necessary conditions which price the firms’ equity are:

qjt = Et
[
Me
t+1(qjt+1 + divjt+1)

]
, j ∈ [0, 1]

with Me
t+1 ≡ βe

Ũ ′(Cet+1)

Ũ ′(Cet )

with equality in equilibrium because the firms must be held by the entrepreneur. The key take-away

is that, in equilibrium, the firms will thus use the entrepreneur’s stochastic discount factor Me
t when

maximizing their value and discounting future dividend streams. Also, market clearing for firms’ shares

requires njt = 1,∀t, j, verifying that the only source of the entrepreneur’s consumption are dividends paid

by the firms

Cet =

∫ 1

0

divjtdj

2.2.3 Final Goods and New Capital Producers

The representative final goods producer’s optimization yields the demand for labor and capital:

Wt = (1− α)AtK
α
t L
−α
t (7)

rt = αAtK
α−1
t L1−α

t (8)

New capital producers’ profits are given by:

ΠI
t = QtIt − Itϑ

(
It
Iss

)
(9)

Their optimization with respect to It yields that the equilibrium capital price follows:

Qt = ϑ

(
It
Iss

)
+

It
Iss

ϑ′
(
It
Iss

)
(10)

The law of motion for aggregate capital is:

Kt+1 = It + (1− δ)Kt (11)

2.2.4 Firms and the Loan Contract

Let us denote firm j’s accumulated internal wealth after paying the lender yet before paying dividends in

t by Ejt , for equity. And let the firm net worth N j
t be the firm’s internal wealth after paying dividends.

This net worth is accumulated by purchasing capital Kj
t in t − 1, earning rental returns and capital

gains on ωjtK
j
t , paying back the contracted upon payment to the lender in t, and paying dividends to

the owner.

Because of the imperfect obsevability of firm j’s idiosyncratic capital shock ωjt+1, the costly state veri-

fication problem arises. Firm j’s investment of Kj
t+1 units of capital yields ωjt+1K

j
t+1 units in t+1 which

generates an income flow of ωjt+1 [rt+1 + (1− δ)Qt+1]Kj
t+1 = ωjt+1R

k
t+1QtK

j
t+1. Following Townsend
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(1979) and Williamson (1986), one can show that if payoffs are linear in the project outcome ωjt+1K
j
t+1,

and there is no random monitoring, the optimal contract is risky debt.9 Since idiosyncratic firm risk is

fully diversified in the financial intermediary’s portfolio, this is true on the lender’s side. As for firm j,

below it will be clear that if risky debt is the optimal contract, then the firm’s value function is linear,

closing the logical circle, analogously as demonstrated by CFP.

By risky debt we mean that monitoring only occurs for low realizations of ωjt+1. More specifically,

in the absence of aggregate uncertainty, i.e. when rt+1 and Qt+1 are known at the time of signing

the contract, the borrower and lender agree on a cutoff ω̄jt+1 and an implied promised repayment to

the lender: ω̄jt+1R
k
t+1QtK

j
t+1. If ωjt+1 < ω̄jt+1, the borrower does not have sufficient funds to pay the

lender. He declares bankruptcy, the lender incurs the monitoring cost and gets all of the remaining funds,

which yields him an income flow of (1− µ)ωjt+1R
k
t+1QtK

j
t+1. If ωjt+1 ≥ ω̄jt+1, no monitoring occurs, the

borrower repays the promised amount ω̄jt+1R
k
t+1Qt+1K

j
t+1 and holds on to the remaining income flow of

(ωjt+1 − ω̄
j
t+1)Rkt+1QtK

j
t+1. Note that ω̄jt+1 implicitly determines an interest rate Rdef,jt+1 earned by the

lender that is subject to default risk, defined by: Rdef,jt+1 (QtK
j
t+1 −N

j
t ) = ω̄jt+1R

k
t+1QtK

j
t+1.

In the presence of aggregate uncertainty, however, the optimal contract involves the lender and

borrower agreeing upon a schedule of {ω̄jt+1}, with a specific value of the cutoff for each possible realization

of the aggregate state. Conditional on having observed aggregate outcomes and thus knowing the implied

ω̄jt+1, the optimality of risky debt, now for each realization of the aggregate state, remains. The CSV

problem takes as exogenous the aggregate returns on capital and the opportunity cost of the lender.

Let Γ(ω̄) denote the expected gross share of the returns to firm j’s held capital going to the lender.

And let µG(ω̄) be the expected monitoring costs:

Γ(ω̄) ≡
ω̄∫

0

ωf(ω)dω + ω̄

∞∫
ω̄

f(ω)dω =

ω̄∫
0

ωf(ω)dω + ω̄[1− F (ω̄)]

µG(ω̄) ≡ µ

ω̄∫
0

ωf(ω)dω

Noting that

Γ′(ω̄) = 1− F (ω̄) > 0

Γ′(ω̄)− µG′(ω̄) = [1− F (ω̄)][1− µω̄h(ω̄)] > 0 if ω̄ < ω̄∗

we have that the firm’s expected net share [1− Γ(ω̄)] is decreasing in ω̄ and that of the lender, [Γ(ω̄)−
µG(ω̄)] increasing.10

Let us define and denote firm j’s leverage attained in period t, going into period t+1 as: κjt ≡
QtK

j
t+1

Njt
.

Then, integrating out the realization of ωjt+1, conditional on the aggregate realizations of (rt+1, Qt+1),

we can write the expected t+ 1 equity of the firm and the lender’s return Rl,jt+1 conditional on aggregates

9The proof is exactly as for the conventional CSV problem without aggregate uncertainty, only applied for each realization
of the aggregate state separately.

10In the above, h(ω) ≡ f(ω)/[1 − F (ω)] is the hazard rate and ω̄∗ is the cutoff value at which the lender’s net share

is maximized. Assuming that
∂[ωh(ω)]

∂ω
> 0 and lim

ω→+∞
ωh(ω) > 1

µ
, as will be satisfied by the log-normal distribution

employed in the computations, there exists a unique such ω̄∗. At the optimum, it cannot be the case that for any realization
of aggregate shocks ω̄j > ω̄∗. Because then, ω̄j can be reduced, the borrower made better off and the participation constraint
slackened. In the calibration and simulations employed, ω̄t will be significantly below ω̄∗.
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as:

Ejt+1 ≡ [1− Γ(ω̄jt+1)]Rkt+1QtK
j
t+1 = [1− Γ(ω̄jt+1)]Rkt+1κ

j
tN

j
t

Rl,jt+1 ≡
[Γ(ω̄jt+1)− µG(ω̄jt+1)]Rkt+1QtK

j
t+1

QtK
j
t+1 −N

j
t

= [Γ(ω̄jt+1)− µG(ω̄jt+1)]Rkt+1

κjt

κjt − 1

And the relation between N j
t and Ejt is naturally:

N j
t = Ejt − div

j
t

Since all firms are identical, apart from their equity, the relevant idiosyncratic state variable for firm j will

just be Ejt . Let us denote the value of a firm with period t equity Ejt , before paying dividends by Ṽt(E
j
t ).

Given equity, the contracting problem is to choose Kj
t+1 and the schedule

{
ω̄jt+1

}
subject to the lender’s

participation constraint. Or equivalently, one can choose κjt and
{
ω̄jt+1

}
. Because firm j cannot raise

external financing without any net worth, dividends necessarily cannot exceed equity divjt ≤ Ejt , and

to continue operating a capital project, the inequality must be strict. divjt < 0 is understood as equity

injections by the owner into the firm. Firm j’s value function will thus satisfy the Bellman equation:

Ṽt(E
j
t ) = max

{ω̄jt+1},κ
j
t ,div

j
t

{
divjt + Et

[
Me
t+1Ṽt+1(Ejt+1)

]}
(12)

s.t. Et
[
Mt+1R

l,j
t+1

]
= Et

{
Mt+1[Γ(ω̄jt+1)− µG(ω̄jt+1)]Rkt+1

κjt

κjt − 1

}
≥ Et[Mt+1R

l
t+1] = 1

Ejt+1 = max{ωjt+1 − ω̄
j
t+1, 0}Rkt+1κ

k
t

(
Ejt − div

j
t

)
, divjt ≤ E

j
t

As mentioned in section 2.2.4, in equilibrium the firms apply the entrepreneur’s stochastic discount factor

Me
t+1. The lender’s participation constraint arises as the result of the intermediary being a pass-through

entity, combining with the facts that in equilibrium all contracts will offer the same expected return to

the lender Rlt = Rl,jt ,∀j and as elaborated above Rlt = Rdt in equilibrium, and finally employing the

household’s Euler equation.

As is commonly done in computational models of firm heterogeneity, for example by Khan and

Thomas (2008), one can also redefine the firm’s value measured in units of the entrepreneur’s marginal

utility, taken as given by firm j, as Vt(E
j
t ) ≡ U ′(Cet )Ṽt(E

j
t ), and rewrite (13) as:

Vt(E
j
t ) = max

{ω̄jt+1},κ
j
t ,div

j
t

{
Ũ ′ (Cet ) divjt + βeEt

[
Vt+1(Ejt+1)

]}
(13)

This redefinition of the value function is not directly useful here for solving the firm’s equivalent problem,

but defining Vt(E
j
t ) in such a way makes it easy to point out the close similarities between this setup

and that used by CFP later on (see Section 2.3.1 and Appendix B).

We can guess that the continuation value function is linear, i.e. Vt+1(Ejt+1) = Vt+1E
j
t+1, where, with

an abuse of notation, Vt+1 is now understood to be a variable that measures the marginal valuation of

an additional unit of equity to the firm. Plugging in the law of motion for Ejt+1 and applying the law of

10



iterated expectations to integrate out the realization of ωjt+1, the Bellman equation becomes:

Vt(E
j
t ) = max

divjt≤E
j
t

{
divjt

(
Ũ ′(Cet )− βeEt

[
Vt+1[1− Γ(ω̄jt+1)]Rkt+1

]
κjt

)}
+

+ Ejt × max
{ω̄jt+1},κ

j
t

{
βeEt

[
Vt+1[1− Γ(ω̄jt+1)]Rkt+1

]
κjt

}
s.t. Et

{
Mt+1[Γ(ω̄jt+1)− µG(ω̄jt+1)]Rkt+1

}
κjt ≥ κ

j
t − 1

In equilibrium, the constraint divjt ≤ E
j
t could not be binding as, by linearity, it would have to be binding

for all firms j ∈ [0, 1], implying no net worth were to be left for the firms and no capital Kt+1 could be

acquired.11 The individual divjt are thus not pinned down, and in equilibrium it must be the case that:

Ũ ′(Cet ) = βeEt
[
Vt+1[1− Γ(ω̄t+1)]Rkt+1

]
κjt

Since the participation constraint was already initially written independently of Ejt , the above clearly

verifies the guess that the firm’s value function Vt(E
j
t ) is linear in equity and the problem of choosing

κjt and {ω̄jt+1} is independent of firm j’s equity. Thus, given that the optimal choices of κjt , {ω̄
j
t+1} are

unique, which can be proved rigorously, each firm chooses the same leverage ratio κt and cutoff schedule

{ω̄t+1}. This implies that the Bellman equation can be written as

Vt = max
{ω̄t+1},κt

{
βeEt

[
Vt+1[1− Γ(ω̄t+1)]Rkt+1

]
κt
}

(14)

s.t. Et
{
Mt+1[Γ(ω̄t+1)− µG(ω̄t+1)]Rkt+1

}
κt ≥ κt − 1 (15)

further implying that Ũ ′(Cet ) = Vt. Given that all firms choose the same κt and {ω̄t+1}, the distribution

of internal wealth across the firms does not matter for aggregates and we need to only track the aggregate

level of firms’ internal wealth. And although the distribution of dividend payments is not pinned down in

equilibrium, we have established in Section 2.2.2 that it must necessarily be the case that Cet =
∫ 1

0
divjtdj,

with Cet satisfying the Euler equation:

Ũ ′(Cet ) = βeEt
[
Ũ ′(Cet+1)[1− Γ(ω̄t+1)]Rkt+1

]
κt (16)

And the aggregate net worth of firms then evolves as

Nt = [1− Γ(ω̄t)]R
k
t κt−1Nt−1 − Cet (17)

where κt ≡
QtKt+1

Nt
(18)

Note that the leverage rate κt is simultaneously the inverse of the firms’ (and thus the entrepreneur’s)

share of financial wealth in the economy. Because each firm needs a positive amount of net worth to

operate its project, I assume that the entrepreneur provides transfers from other firms to any firms who

default and must pay out all returns to the lender. These transfers are inconsequential as the distribution

of wealth across firms is irrelevant for the aggregates.

Taking the first order conditions to the contracting problem of maximizing the firm’s continuation

value in (14) subject to (15) with respect to κt and {ω̄t+1}, and using these in (14) to yield that the

11To be precise, one can first establish that the value function is affine, and given an affine value function, it must be
the case that in equilibrium Ũ ′(Cet ) = βeEt

[
Vt+1[1− Γ(ω̄t+1)]Rkt+1

]
κt, yielding linearity.
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Lagrange multiplier on (15) equals Vt, one can summarize the resulting optimality condition as:

Γ′(ω̄t+1)

Γ′(ω̄t+1)− µG(ω̄t+1)
=

(
βe
Ũ ′(Cet+1)

Ũ ′(Cet )

)−1

Mt+1

(
=
Mt+1

Me
t+1

)
(19)

which holds state-by-state, for each realization of aggregate uncertainty in t + 1. Of course, in the set

of equilibrium conditions that determine period t realizations, this condition shows up with time indices

lagged by one period compared to (19), in order to pin down the current ω̄t.

The equilibrium lender return is:

Rlt+1 = [Γ(ω̄t+1)− µG(ω̄t+1)]Rkt+1

κt
κt − 1

(20)

which is the most natural variable to capture the degree of aggregate risk sharing. BGG imposed that

Rlt+1 is predetermined in t and thus constant across realizations of aggregate uncertainty, whereas CFP

showed that under optimal contracting, it comoves significantly with Rkt+1.

A thorough analysis of the properties of the privately optimal contract and its implications in the

standard BGG framework is presented by Carlstrom et al. (2016), with all the insights extending to the

set up presented above. To reiterate, the key optimality condition governing aggregate risk sharing is

(19). Given the assumptions in Footnote 10, one can show that the left hand side is strictly increasing in

ω̄t+1. Therefore, naturally, whenever the household values wealth relatively more, meaning Mt+1 is high,

all else equal, also ω̄t+1, and thus the lender’s net share [Γ(ω̄t+1) − µG(ω̄t+1)] and the lender’s return

Rlt+1 is high, to provide consumption insurance to the households. Conversely, when the value of firms’

internal net worth captured by Ũ ′(Cet+1) = Vt+1 is high, the contract calls for a lower ω̄t+1 allowing

the borrowers to hold on to more net worth, all else equal. Or alternatively, one can just see this as

the outcome of optimal risk sharing between the household and the entrepreneur, aiming to equalize

marginal rates of substitution Mt+1 and Me
t+1, subject to the altered marginal costs of redistribution

incurred due to bankruptcy costs.

2.2.5 Market Clearing and Equilibrium Definition

In equilibrium the household’s deposits fund the firms’ projects:

dt+1 = QtKt+1 −Nt (21)

Combining this condition, the households’ and entrepreneurs’ budget constraints, the definition of lever-

age and the rental and labor market equilibrium conditions with new capital producers’ profits, one

arrives at the aggregate resource constraint:

Ct + Cet + Itϑ

(
It
Iss

)
+ µG(ω̄t)R

k
tQt−1Kt = AtK

α
t L

1−α
t (22)

Given that several of the equilibrium conditions were imposed in the derivations above, we can define a

competitive equilibrium of the model presented as follows.

Definition 1. A competitive equilibrium of the representative agent model is a collection of stochastic

processes for:

1. a price system {rt,Wt, R
k
t , R

l
t, Qt},
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2. household’s consumption, stochastic discount factor and value function realization {Ct, Mt, Vt}

3. entrepreneurial consumption, net worth and leverage quantities and contractual cutoffs {Cet , Nt,

κt, ω̄t}

4. aggregate labor, investment and capital quantities {Lt, It,Kt+1}

such that equations: (1), (2), (4)–(8), (10), (11), (16)–(20), (22), with Rdt = Rlt, where applicable, are

satisfied, given the stochastic process for {At}, and initial conditions (K0, E0, A0).

2.3 Results on Privately Optimal Risk Sharing

2.3.1 Equivalence with CFP Model

In this section I will argue that the setup with a representative entrepreneur with logarithmic utility who

owns firms that are subject to idiosyncratic shocks is effectively equivalent, to a first order approximation,

to the standard approach used by BGG and CFP. Further details and the precise entrepreneurs’ problem

in the CFP model are presented in Appendix B.

In the benchmark setup employed by BGG and CFP, a unit mass of entrepreneurs are assumed

to invest in capital subject to the CSV problem directly, have linear utility from consumption and a

time discount factor identical to that of the households. To be precise, let us denote this time discount

factor as βCFPe . Since the entrepreneurs are financially constrained, it is optimal for them to postpone

consumption indefinitely. To keep entrepreneurs saving themselves out of financial constraints, it is

assumed that each faces a constant probability 1− γ of dying each period. The dying entrepreneurs are

replaced by an equal of mass entering ones who get a transfer from the survivors to start operations.

Entrepreneurs only consume when they die. This means that in each period, a fraction 1−γ is consumed

and the remaining fraction of entrepreneurial equity is invested. Using the same notation as above:

Cet = (1− γ)[1− Γ(ω̄t)]R
k
t κt−1Nt−1

Nt = γ[1− Γ(ω̄t)]R
k
t κt−1Nt−1

And even though the entrepreneurs have linear utility, their marginal valuation of an extra unit of equity

is stochastic because they face time-varying investment opportunities:

Vt = (1− γ) + γβCFPe Et
{
Vt+1[1− Γ(ω̄t+1)]Rkt+1

}
κt (23)

with Vt the marginal valuation of a unit of equity at the beginning of t before the death shock (and

consumption) is realized. The participation constraint in the contracting problem is identical across the

two models. And the optimality condition for risk sharing through ω̄t+1 in the CFP model is:

Γ′(ω̄t+1)

Γ′(ω̄t+1)− µG(ω̄t+1)
=

(
γβCFPe

Vt+1

Vt − (1− γ)

)−1

Mt+1 (24)

Going back to the model set up in Section 2.1, if the entrepreneurs have logarithmic utility Ũ(C) =

log(C), then guessing that consumption is a constant fraction of equity, and combining (16) and (17)
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yields the standard optimal consumption result of an agent that has only financial wealth:

Cet = (1− βe)[1− Γ(ω̄t)]R
k
t κt−1Nt−1

Nt = βe[1− Γ(ω̄t)]R
k
t κt−1Nt−1

So we see right away that if βe = γ, then the two models imply identical entrepreneurial consumption

and net worth accumulation, conditional on all other equilibrium variables.

To fully establish identical dynamics for these models, it remains to be shown that (23) and (24)

imply the same risk sharing behavior as (16) and (19) do. Appendix B establishes this to a first order

approximation as βCFPe → 1.12 To see why this might be the case, notice the similarities between these

pairs of equilibrium conditions. In both cases, the marginal valuation of an extra unit of wealth Vt, which

also equals U ′(Cet ) in my setup, must satisfy an Euler equation which determines how the log-deviations

of Vt from steady state are related across time. And the similarities between (19) and (24) are evident.

When log-linearized, the only difference is the appearance of βCFPe in both conditions for the CFP model.

2.3.2 The Relevance of Human and Financial Wealth Dynamics

An important determinant of aggregate financial risk sharing in the economy is the behavior of human and

financial wealth dynamics. To make the analysis of this idea clear, let us consider the household utility

specification ξ = ψ = 1, i.e. log-utility from consumption, and similarly log-utility for the entrepreneur.

Also, given that in a first order approximation certainty equivalence applies, let us consider how the

economy behaves after a TFP shock has been realized and no future shocks are expected. Under such

a household utility specification, we have that the household consumes a constant fraction (1− β) of its

total wealth:13

Ct = (1− β)
(
Rltdt +Ht

)
= (1− β)

{
[Γ(ω̄t)− µG(ω̄t)]R

k
tQt−1Kt +Ht

}
=

= (1− β) {[Γ(ω̄t)− µG(ω̄t)]Ft +Ht}

where Ft ≡ [rt + (1− δ)Qt]Kt

Ht ≡
∞∑
j=0

1

Rlt,t+j
Wt+jLt+j with Rlt,t+j ≡

j∏
s=1

Rlt+s, and Rlt,t = 1

with Ht and Ft standing for the human and financial wealth in the economy, respectively. Following

Section 2.3.1, the entrepreneur consumes fraction (1− βe) of its total (financial) wealth:

Cet = (1− βe)[1− Γ(ω̄t)]R
k
t κt−1Nt−1 = (1− βe)[1− Γ(ω̄t)]Ft

Suppose that the economy is shocked in period t, while previously having been in steady state. Using

these optimal consumption policies in the privately optimal risk sharing condition (19) under log-utility,

we have:

Γ′(ω̄t)

Γ′(ω̄t)− µG′(ω̄t)
=

[1− Γ(ω̄t)]Ft
[Γ(ω̄t)− µG(ω̄t)]Ft +Ht

× 1− βe
1− β

β

βe

Css
Cess

12The statement must be made in a limiting sense because if βCFPe = 1, then Vt is not finite in the CFP model.
13To be precise, the representative household’s financial wealth also contains the value of ownership of new capital

producers who make profits outside of steady state. However, the profits are zero in steady state and one can verify
quantitatively that the magnitude of their fluctuations is very small. For example, in response to a 1% TFP shock in the
baseline calibration of this model the profits increase by an amount that is 0.07% of steady state aggregate output. Thus,
for clarity, I am currently abstracting from the new capital producers’ value in the household’s financial wealth.
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Therefore, given that the left hand side is increasing and the right hand side decreasing in ω̄t, this

establishes a negative relationship between Ht/Ft and ω̄t. That is, whenever the human wealth in the

economy increases more than the financial wealth, the gains accrue to the household and it is thus

optimal to leave a larger share of financial weatlh, implied by a lower ω̄t, to the firms. For example, if

Ht/Ft = Hss/Fss, then ω̄t = ω̄ss and the aggregate financial risk is shared perfectly, meaning that Rlt

responds to the shock by the same relative amount as Rkt .

Of course, Ht and Ft are themselves equilibrium objects, dependent on ω̄t itself, but this note

emphasizes that it is important to keep in mind that shocks which affect human and financial wealth

differently, could have markedly different implications for how the aggregate financial risk is to be shared.

This motivates the discussion of the importance of TFP shock persistence in Section 3.1 and the model’s

extension to uninsurable household labor productivity risk in Section 4, which aims to detach a single

household’s consumption, at least partly, from the total human capital in the economy.

3 Quantitative Analysis of the Representative Household Model

3.1 Calibration

In the calibration of model parameters I pursue targets from earlier literature, following BGG and CFP

wherever possible for comparability. One time period t is considered to be a quarter. As CFP, I set the

capital share in production to be α = 0.35, capital price elasticity with respect to investment φQ = 0.5

and the depreciation rate δ = 0.025. TFP follows logAt = ρA logAt−1 + εAt with ρA = 0.95, as used by

CFP as a benchmark, varied below. εAt is i.i.d mean-zero. For computing impulse responses, the other

properties of εAt are irrelevant. For simulations, I assume that εAt follows a normal distribution with

standard deviation 0.0072, following King and Rebelo (1999).

As is common since Carlstrom and Fuerst (1997), the idiosyncratic entrepreneurial capital shock is

log-normal: logω ∼ N
(
−σ

2

2 , σ
2
)

. Following the discussion in Section 2.3.1 and the targets set by CFP,

the parameters (µ, βe, σ) pertaining to the entrepreneurial financial frictions are pinned down, jointly

with all other parameters, to yield in steady state: (i) a spread of 200 basis points (annualized) between

the lender return Rdefss subject to default risk and the riskless lender return Rlss, both as defined in

Section 2.2.4, (ii) a quarterly bankruptcy rate F (ω̄ss) of 0.75%, (iii) a leverage ratio of κss = 2. Exactly

as in CFP, this results in (µ, βe, σ) = (0.63, 0.94, 0.28). Based on the discussion in Section 2.3.1, I set

Ũ(C) = log(C).

Following CFP, I set β to 0.99. As stated above, momentary household utility has the form u(C,L) =

[CΦ(L)]
1− 1

ψ . Like BGG and CFP, I solve the model by log-linearization around the deterministic steady

state. Because of this, the properties of the function Φ only affect the equilibrium conditions through

Φ(Lss), Φ′(Lss) and Φ′′(Lss). More specifically, one needs to determine νl ≡ −Φ′(Lss)Lss
Φ(Lss)

> 0 which

captures the effect of Lt on Mt and Vt, and −Φ′(Lss)
Φ(Lss)

, which pins down Lss. And finally, the determination

of labor supply elasticity can be seen by log-linearizing (4) to get:

ct +

[
Φ′′(Lss)Lss

Φ′(Lss)
+ νl

]
︸ ︷︷ ︸

≡1/ηl

lt = wt

with lowercase letters denoting the corresponding log-deviations from steady state values. By setting

ηl = 3, one can exactly replicate the labor supply condition as used by CFP. The value of νl is determined
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independently of Φ in steady state. To see this, rewrite the labor market equilibrium condition in steady

state as:

−Φ′(Lss)

Φ(Lss)
Lss = (1− α)

(
Kss

Lss

)α
Lss
Css

Similarly as in a conventional RBC model, Kss
Lss

and Css
Lss

are pinned down by the remaining system of

equilibrium conditions. This results in νl ≈ 0.958, close to the recommendation by Uhlig (2010) made

based on the fact that (1−α)
(
Kss
Lss

)α
Lss
Css

= (1−α) YssCss
≈ 1, with Yss/Css ≈ 3/2. I then choose −Φ′(Lss)

Φ(Lss)

to normalize Lss to 1.

As for the parameters ψ and ξ governing the household’s intertemporal elasticity of substitution (IES)

and risk aversion, respectively, I consider various values below. In the benchmark case of ψ = ξ = 1,

the model’s first order approximation matches the log-utility specification used by CFP. As discussed in

detail by Swanson (2015), the ability of households to adjust their labor supply in response to shocks

affects their attitude towards risk and thus measures of relative risk aversion, as defined by Arrow (1965)

and Pratt (1964), do not exactly equal ξ in this case. Nontheless, ξ equals the coefficient of relative risk

aversion when labor were to be held exogenously fixed. And ξ is larger than the consumption-wealth

coefficient of relative risk aversion with adjusting labor, as defined and shown by Swanson (2015) to be

the most adequate measure in explaining equity premia in an RBC model. This means that allowing

for a variable labor margin tilts the outcomes against less risk sharing between the household and the

entrepreneurs as the household’s effective risk aversion is less than ξ.

Finally, note that unlike most applications in which the introduction of Epstein-Zin utility with ξ

differing from 1/ψ has no effect in a first order approximation solution, it does here. Because of certainty

equivalence imposed by the solution method and the fact that in standard DSGE model equilibrium

conditions in period t, the stochastic discount factor Mt+j shows up inside expectation terms with j > 0,

the term

(
Vt+1

Et[V1−ξ
t+1 ]

1
1−ξ

) 1
ψ−ξ

effectively equals 1 everywhere ex ante. However in the current case, the

agents’ stochastic discount factors explicitly appear ex post, as Mt in t, in condition (19) to determine

how any realized risk is shared. And the implied realization of ω̄t then has direct first order effects on

the agents’ wealth distribution and equilibrium dynamics.

3.2 Second Moments and Impulse Responses

As the analysis of the representative household model focuses on how changes in the household’s pref-

erences affect privately optimal aggregate risk sharing in this baseline economy, I concentrate the quan-

titative analysis on presenting standard deviations and impulse response functions of key balance sheet

and real variables for various preference calibrations.

Table 1 below presents results from different combinations of ψ and ξ. The benchmark is ψ = ξ =

1, corresponding to the infinitely patient entrepreneur limit of CFP’s model. Increasing either ξ or

decreasing ψ makes the household less willing to take on aggregate financial risk generated by TFP

shocks. Equilibrium increases in household consumption after positive productivity shocks generate

larger drops in its stochastic discount factor due to decreased elasticity of intertemporal substitution and

increased risk aversion. I consider two main exercises. Firstly, keeping ψ = 1, I determine the ξ necessary

to yield an optimal contract that implies a non-state-contingent lender’s return. Secondly, I do the same

while setting ψ = 1/ξ, i.e. employ expected utility preferences with momentary utility [CΦ(L)]1−ξ

1−ξ .

The first column of output in Table 1, denoted as
(
∂rlt
∂εAt

)/( ∂rkt
∂εAt

)
, refers to the TFP shock respon-

siveness of the net lender return, log(Rlt), relative to that on the borrowers’ assets, log(Rkt ) at impact.

16



For brevity, I use this as the measure of the degree of financial risk sharing. If this entry is 1.0, then

there is perfect aggregate financial risk sharing between the households and entrepreneurs. This is meant

in the sense that in response to an unexpected innovation in TFP at t, ω̄t and the households’ share in

the capital project returns do not respond, making the return on households’ financial assets move one

for one with that on the entrepreneurs’. If this entry is 0.0, then ω̄t responds to eliminate any effects

of Rkt on Rlt, implying a non-state-contingent lender return – the contract imposed by BGG. And if

this entry happens to be negative, it is the entrepreneurs who are providing consumption insurance to

the households, increasing payouts in recessions, and vice versa. The following two columns present the

standard deviation of log entrepreneurial net worth and leverage relative to that of log output y. The

standard deviations of the latter and log investment i are in the last two columns, respectively. I compute

the second moments based on a simulation of 106 quarters.

Table 1: Relative impulse response of lender return, relative standard deviations of log entrepreneurial
net worth and leverage, absolute standard deviation of log output and investment (in percentages), in
representative household model; simulation of 106 quarters.

ρA ξ, ψ

(
∂rlt
∂εAt

)/(
∂rkt
∂εAt

)
std(n)

std(y)

std(κ̂)

std(y)
std(y),% std(i),%

0.95
1.0, 1.0 0.825 0.947 0.050 2.626 2.884
13.2, 1.0 0.000 1.498 0.495 2.875 4.040
5.92, 1/ξ 0.000 1.597 0.424 3.403 5.473

0.99
1.0, 1.0 0.752 0.982 0.029 6.170 4.932
4.34, 1.0 0.000 1.100 0.206 6.311 5.534
2.57, 1/ξ 0.000 1.099 0.156 6.493 5.701

First of all, as demonstrated by CFP, we see that with logarithmic utility and TFP shock persistence

of 0.95, there is a considerable degree of aggregate risk sharing, although not exactly close to 1.0, with the

measure of risk sharing at approximately 0.82. It is still enough to generate small leverage fluctuations

of about 5% of that of output, and net worth volatility at the same magnitude of numeraire output –

evidence of a significant dampening of the financial accelerator mechanism.

Increasing ξ to 13.2 yields a high enough aversion to risk for the household not to be willing to take

on aggregate financial risk and the contract imposed by BGG becomes the optimal private contract.

An unexpected increase in household consumption in response to a positive TFP shock increases the

household’s utility Vt, making the stochastic discount factor Mt drop significantly. The relative volatility

of entrepreneurial net worth is about 1.5 times higher and that of leverage almost 10 times higher than

under logarithmic household utility. There is also slight amplification of output fluctuations, with its

standard deviation increasing about 10%.

It is worth emphasizing that because the underlying framework is a simple RBC model, the current

specification of the model does not contain forces that would cause entrepreneur net worth and leverage

volatility to lead to significant output volatility amplification. The only two channels that lead to more

volatile output due to less financial risk sharing are the wealth effect in household labor supply, which

leads to larger positive responses of labor supply when households take on a smaller wealth increase after

a positive shock, and the increased capital accumulation, which arises from the firms’ improved ability

to invest. Neither force is quantitatively strong in the current calibration. Thus, in the current analysis,

a more valid measure of real amplification caused by the financial accelerator mechanism is the volatility

of investment, which is directly affected by the financial conditions of firms. As one can see, going from

logarithmic household utility to ξ = 13.2, the standard deviation of investment increases about 40%.

Adding nominal rigidities or working capital constraints on hiring labor to the model have the potential
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to introduce more output amplification due to financial frictions.

One can also can arrive at less risk sharing with lower household’s IES. Setting ξ to 5.92 and ψ =

1/5.92, again leads to non-state-contingent lender returns. The increase in the relative volatility of net

worth is slightly larger, and smaller for leverage. The implied increase in output volatility is significantly

larger, almost 30%. The causes of these differences become clearer from the impulse responses below.

Although the aim of the analysis here is not to match the simulated moments to the data, it is worthwhile

noting that if one HP-filters the simulated series for comparability, the relative net worth and leverage

volatilities generated under non-state-contingent lender returns are remarkably close to those of US

nonfinancial firms during 1976Q1–2015Q3. These results are shown in Table 4 in Appendix A.

To illustrate the model’s dynamics in more detail, Figure 2 below presents impulse responses to a 1%

positive TFP shock over 28 quarters for the three utility calibrations under ρA = 0.95. The lower left

panel shows the relative response of the quarterly lender return rlt. As seen above, the benchmark case

exhibits a non-trivial degree of risk sharing with more than 80% of the innovation in capital returns,

seen in the middle right panel, paid out to the households. And the engineered non-state-contingency of

the lender returns are seen for the two other calibrations. Since in the latter two cases the firms hold on
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Figure 2: Impulse responses to 1% positive TFP shock in representative household model, with ρA = 0.95,
(100×) log-deviations from steady state, returns annualized; Horizontal axis – quarters; Blue solid – log-
utility, red dashed – ξ = 13.2, black dash-dotted – ξ = 1/ψ = 5.92.

to relatively more wealth, their net worth increases and leverage decreases significantly more at impact.

Higher net worth facilitates investment, which increases the price of capital, in turn increasing returns

to capital and net worth – the financial accelerator mechanism. And because of logarithmic utility for

the entrepreneur, the response of Ce follows that of net worth. With less risk sharing, the household’s

wealth increases less, leading to lower consumption and a weaker positive wealth effect, increasing labor

supply and output.

The key difference between the two parametrizations with non-state-contingent lender returns are the

transitional dynamics of investment, net worth and output. In both cases, at the time of the shock, there
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is significant amplification. Yet for the case with high risk aversion and unitary IES, investment and net

worth fall significantly faster, leading to smaller capital accumulation and a faster reversion in output.

The reason is that with a low IES, the household prefers a flatter consumption profile, inducing it to

save more throughout the first few periods after the shock. The extra savings flow through firms into

investment, boosting entrepreneurial net worth. The fact that higher household savings should increase

their wealth share, and thus entrepreneurial leverage, is counteracted by the fact that the high investment

increases capital prices and entrepreneurial net worth through capital returns. Yet we do see that over

time, leverage recovers faster under low IES, reflecting the household’s larger accumulated wealth share.

The sustained high investment yields larger capital accumulation and higher output throughout the

transition path.

Note that the appearance of labor growth – which is negative along the transition path – in the

household’s stochastic discount factor when ψ < 1 makes it willing to take on a steeper consumption

profile and dampens this added stimulus to the financial accelerator mechanism from low IES. If one were

to exogenously set νl = 0 for the sake of the argument, the desire for a flat profile would be stronger,

the initial household savings even larger and the amplification in the low IES parametrization more

significant. A νl > 0 also explains how negative consumption growth can appear alongside lender returns

above steady state values in the first few quarters after the shock.

When the persistence of the producvitity shocks is increased, less of the aggregate financial risk

associated with the TFP shocks is taken on by the households, evident for ξ = ψ = 1. This reflects the

importance of human and financial wealth dynamics for aggregate financial risk sharing in the economy,

as discussed in Section 2.3.2. An increase in productivity shock persistence may increase the household’s

human capital responsiveness as the gains or losses from the discounted labor income throughout all

future periods are accrued. This effect on human wealth is counteracted by the fact that with a more

persistent shock, the transition path of household consumption is flatter, implying a smaller drop in the

lender return used for discounting human wealth income after a positive productivity shock.
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Figure 3: Left panel: Impulse responses of human (HC) and financial wealth (FC) to 1% positive TFP
shock, percentage deviations from steady state, baseline calibration. Right panel: difference in HC and
FC percentage deviations; Horizontal axis – quarters; Red – ρA = 0.99, blue – ρA = 0.95, black –
ρA = 0.85.

At the same time, a more persistent positive TFP shock does not necessarily lead to a larger innovation

in financial wealth. When shocks have less persistence, consumption smoothing motivates agents to save

more of the initial windfall, boosting investment. As the price of capital is directly tied to investment,

this channel decreases financial wealth responsiveness when TFP shocks become more persistent. The

left panel of Figure 3 depicts the impulse responses of human and financial wealth, as defined in Section

2.3.2, for three different degrees of TFP shock persistence in the ξ = ψ = 1 calibration. All three
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specifications yield almost identical initial responses of human wealth, implying that for less persistent

shocks a larger drop in the discount rate compensates for the lower duration of higher labor income. On

the other hand, increased shock persistence does lead to lower initial responsiveness of financial wealth,

resulting in larger differences in human and financial capital responses, seen in the right panel of the

figure.

Because of the increased relative volatility of human wealth under ρA = 0.99, smaller changes in

ξ and ψ are required to yield non-state-contingent lender returns, as households’ exposure to human

wealth fluctuations becomes more severe, in relative terms. One either needs ξ = 4.34 and ψ = 1,

or ξ = 1/ψ = 2.57. Yet there is also an extra effect arising from Epstein-Zin preferences whenever

ξ 6= 1/ψ. Persistently higher consumption brings about large innovations in household lifetime utility

Vt, making the household additionally averse to taking on the financial risk related to persistent TFP

shocks. This discussion of course implies that for less persistent productivity shocks, ξ and ψ would have

to deviate significantly from unity in order for non-state-contingent lender returns to arise. For example,

for ρA = 0.90, the financial accelerator mechanism implies that financial wealth responds relatively more

than human wealth on impact, and ξ ≈ 27 while ψ = 1 is necessary for non-state-contingent lender

return optimality.

4 The Heterogeneous Households Extension

To study the relevance of uninsurable idiosyncratic lender risk for the sharing of aggregate risk, I introduce

time-varying idiosyncratic risk to households’ labor productivity. By employing a special case of the

households’ preferences introduced in Section 2.2.1, and by assuming a specific stochastic structure for

idiosyncratic labor productivity shocks, building on the approach by Constantinides and Duffie (1996), a

no-trade equilibrium provides tractability and a clean exposition of the question at hand. The resulting

model with heterogeneous households is in its essence a slight variation of the representative household

model presented above, only differing in that the stochastic discount factor used by households to price

assets will now also mirror the time-varying uninsurable idiosyncratic risk which they face.

4.1 The Environment

Let there be a unit mass of ex ante identical infinitely-lived households, indexed by i ∈ [0, 1]. Following

the exposition in Section 2.2.1, let us consider the specification of households’ preferences in which

ξ = ψ = 1, and Φ(L) ≡ (1 − L)φ, with φ > 0 a parameter. This means that we are simply considering

households with expected utility preferences and a momentary utility flow from consumption and leisure

given by:

u(C,L) = logC + φ log(1− L)

In addition to holding deposits di,t in the financial intermediary, the households can freely trade risk-free

bonds in zero net supply with each other. Yet in the equilibrium considered below, all households i

will hold an identical portfolio of financial assets, and thus the holdings of such bonds are zero across

i ∈ [0, 1]. This is the sense in which the equilibrium considered is a ”no-trade” one, while there is active

borrowing and lending between the households and the continuum of firms through the intermediary.14

14More generally, the households could be allowed to trade any set of assets in zero net supply whose returns are
contingent only on aggregate realizations, e.g. a set of Arrow-Debreu securities, with one corresponding to each realization
of the aggregate state. Again, in the no-trade equilibrium, the holdings of these would be zero across all households.
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Also because of this, for brevity, I will abstract from trading in new capital producer equity in what is

to follow.

Let us now denote the household’s time discount factor as β̃. The reason for distinguishing the

notation for the heterogeneous households’ discount factor from the β of the representative household

used prior will become clear in the calibration below. All in all, the recursive problem of household i can

thus be written as:

Ut
(
di,t, b

f
i,t, ηi,t

)
= max
ci,t,li,t,di,t+1,b

f
i,t+1

{
log(ci,t) + φ log(1− li,t) + β̃Eit

[
Ut+1

(
di,t+1, b

f
i,t+1, ηi,t+1

)]}
s.t. ci,t + di,t+1 + qft b

f
i,t+1 = Wtηi,tli,t +Rdt di,t + bfi,t + ΠI

t

where ηi,t is the productivity of a unit of household i’s labor li,t in period t, and Ut ≡ [Vt]1−ξ
(1−β)(1−ξ) is

simply a monotonic transformation of the household value function used in Section 2. qft is the period t

price of a risk-free bond paying off a unit of the final good in t+ 1 and bfi,t+1 are household i’s holdings

of such a bond. Eit[·] refers to the conditional expectation operator with respect to both aggregate and

idiosyncratic uncertainty in t+ 1.

I assume that household i’s labor productivity ηi,t follows a stochastic process such that in a no-trade

equilibrium, ci,t = θi,tCt, where Ct ≡
∫ 1

0
ci,tdi and θi,t follows:

θi,t
θi,t−1

= exp

{
σθ,tεi,t −

σ2
θ,t

2

}
(25)

where εi,t ∼ N(0, 1), i.i.d. across households i and time t, and where σ2
θ,t is itself a stochastic process, gov-

erning the time-varying volatility of idiosyncratic risk. Put differently, the equilibrium (log-)consumption

of household i consists of an idiosyncratic component which follows a random walk with drift and time-

varying volatility of innovations, and an aggregate component, with the dynamics of the latter determined

in general equilibrium:

log(ci,t) = log(θi,t) + log(Ct)

with log(θi,t) = −
σ2
θ,t

2
+ log(θi,t−1) + σθ,tεi,t

Solving for the households’ optimal behavior given any process for ηi,t then allows us to characterize

the specific properties of ηi,t required for this to be the case. In what is to follow, I will be referring

to the variance of the (log-)growth of the idiosyncratic consumption component, σ2
θ,t interchangeably

as ”idiosyncratic labor risk”. This is justified by the fact that the growth of a household’s idiosyncratic

consumption component and the implied idiosyncratic labor productivity growth follow very similar

stochastic processes, as discussed in detail below and in Appendix C.

The remaining components of the model pertaining to the representative entrepreneur, the continuum

of firms, the representative financial intermediary, the final goods producer and new capital producers

are unchanged from Section 2.2.

4.1.1 Discussion of Assumptions

The conceptual approach that I am applying to constructing a no-trade equilibrium is exactly that of

Constantinides and Duffie (1996): we are looking for an equilibrium in which individuals’ consumption

behaves in a way that provides simple tractability and aggregation. Since Constantinides and Duffie
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(1996) studied an endowment economy in which households’ income from human wealth was completely

exogenous, it was enough to make the necessary assumptions directly on a household’s labor income

process.15 However, because in the current model labor supply is endogenous, an analogous assumption

must be made on the households’ labor productivity process, taking into account how the households

then choose their labor supply given this process. Having solved for the households’ necessary optimality

conditions, we can then elaborate upon the required idiosyncratic labor productivity process that is

consistent with the conjectured consumption behavior in a no-trade equilibrium.

For brevity, below I will exhibit the implied ηi,t written as a function of aggregate equilibrium out-

comes and the individual’s θi,t. But of course, these aggregate equilibrium objects are themselves func-

tions of initial conditions and current and past realizations of any exogenous stochastic processes affecting

the economy. That is, in general, if we were to collapse the initial conditions and the history of past and

current aggregate shocks up to time t in a single variable St, then equilibrium aggregate consumption

would satisfy Ct = ϕc,t(St) for some function ϕc,t(St) – with consumption an example of an aggre-

gate equilibrium outcome. So, for example, when below we write that ηi,t must satisfy some condition

ηi,t = λη,t(θi,t, Ct), how this should be interpreted is that there is an implied function ϕη,t, the compos-

ite of λη,t and ϕc,t, such that ηi,t = ϕη,t(θi,t,St). And ϕη,t, alongside the stochastic processes for the

aggregate exogenous shocks and (25), thus defines the required fundamental stochastic process governing

ηi,t. Taking the implied stochastic process for ηi,t and the aggregate exogenous stochastic processes as

given, each household makes their decisions optimally, in turn validating the conjectured equilibrium.

Recent empirical evidence by Guvenen et al. (2014) has suggested that it is not the the counter-

cyclical variance of innovations in individual labor income that is causing idiosyncratic labor risk to be

countercyclical, but rather the left-skewness of these innovations is countercyclical. That is, large drops

in earnings become more likely during recessions. For computational ease and expositional clarity, I will

nontheless examine the potential of the countercyclical variance of idiosyncratic labor income growth in

delivering no financial risk sharing in the CFP model. In this case, the quantitative exercise is to simply

characterize the required dynamics of one distributional parameter: the idiosyncratic shock variance σ2
θ,t.

One would expect the introduction of countercyclical left-skewness in the growth process of θi,t to yield

conceptually similar results, although with a specification that introduces more degrees of freedom than

simply determining movements in the second moment for the underlying stochastic process of θi,t. And

this would obscure the precise quantitative exercise that I set out to conduct.

4.2 Equilibrium, Aggregation and No-Trade

Given that only the household sector’s problem has changed, I will focus on deriving their equilibrium

optimality conditions and establishing the existence of a no-trade equilibrium. A household’s first order

necessary conditions for labor supply, deposits and risk-free bonds are now as follows:

c−1
i,tWtηi,t = φ(1− li,t)−1 (26)

1 = Eit
[
Mi,t+1R

d
t+1

]
(27)

qft = Eit [Mi,t+1] (28)

with Mi,t+1 ≡ β̃
(
ci,t+1

ci,t

)−1

(29)

15See Constantinides and Duffie (1996), equation (8).
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By rewriting (26) and integrating across i ∈ [0, 1], we can derive an aggregate labor supply condition:

li,tηi,t = ηi,t − φ
ci,t
Wt

⇒ Lt = η̄t − φ
Ct
Wt

(30)

where Lt ≡
∫ 1

0
li,tηi,tdi is the aggregate effective labor supply and η̄i,t ≡

∫ 1

0
ηi,tdi the average labor

productivity in t. The latter is exogenous to the economy, and could itself follow some stochastic process,

e.g. equivalent to introducing shocks to the household’s labor productivity in a representative household

business cycle model. I will simply normalize η̄t = 1,∀t in the computations below.

For household i, we can also use the labor supply condition in the budget constraint and substitute

out individual labor supply to yield:

(1 + φ)ci,t + di,t+1 + qft b
f
i,t+1 = Wtηi,t +Rdt di,t + bfi,t + ΠI

t (31)

Finally, we can impose the consumption and portfolio choices of household i which correspond to a no-

trade equilibrium of the form we are looking for, i.e. ci,t = θi,tCt, b
f
i,t+1 = 0, di,t+1 = dt+1, and find that

for such policies to be consistent with equilibrium it must be that ηi,t satisfies:

ηi,t =
1

Wt

{
(1 + φ)θi,tCt + dt+1 −Rdt dt −ΠI

t

}
(32)

Following the discussion in Section 4.1.1 above, (32) thus determines the stochastic process for individual

labor productivity consistent with a no-trade in equilibrium in which consumption follows ci,t = θi,tCt,

with θi,t satisfying (25). In Appendix C, I elaborate upon the properties of this implied labor produc-

tivity process and discuss issues such as how to ensure stationarity of the cross-sectional distribution by

assuming that households die and get replaced at some exogenously given rate, as done by Constantinides

and Duffie (1996). Among other things, I point out that since log(θi,t/θi,t−1) is i.i.d. normal, i.e. θi,t is a

geometric random walk with log-normal innovations, and the term (dt+1−Rdt dt−ΠI
t ) is very small in the

calibration considered, also the growth of log(ηi,t/ηi,t−1) conditional on aggregate shock realizations in

t is approximately normal.16 Thus, the idiosyncratic labor productivity process I employ closely follows

labor income processes often used in quantitative studies of Bewley-Huggett-Aiyagari models, e.g. by

Kaplan and Violante (2010), with the added time-varying volatility of innovations, as for example by

Storesletten et al. (2007). Moreover, the implied conditional variance of idiosyncratic labor productivity

growth log
(

ηi,t
ηi,t−1

)
closely follows the conditional variance of log

(
θi,t
θi,t−1

)
, i.e. σ2

θ,t.

The final piece of establishing validity of the no-trade equilibrium is verifying that all households are

willing to hold the required portfolios of deposits and risk-free bonds. Given that in the conjectured

equilibrium, ci,t = θi,tCt, we can focus on Euler equation (27) for deposits, impose (25) and elaborate:

1 =Eit

[
β̃

(
ci,t+1

ci,t

)−1

Rdt+1

]
=

=Eit

[
β̃

(
Ct+1

Ct

)−1

exp

{
−σθ,t+1εi,t+1 +

σ2
θ,t+1

2

}
Rdt+1

]

Let us denote the information set which contains all information up to, and including, t − 1 plus all

information about aggregates up to t as Iat . By the assumption that εi,t ∼ N(0, 1), i.i.d. across

16More precisely, conditional on aggregate realizations in t, ηi,t/ηi,t−1 follows what is sometimes referred to as a three-
parameter lognormal random variable.
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households i and time t, we have that conditional on Iat+1:

−σθ,t+1εi,t+1 +
σ2
θ,t+1

2
∼ N

(
σ2
θ,t+1

2
, σ2
θ,t+1

)

So we can apply the law of iterated expectations to integrate over εi,t+1 and rewrite the above Euler

equation as:

1 =Et

[
β̃

(
Ct+1

Ct

)−1

exp
{
σ2
θ,t+1

}
Rdt+1

]
(33)

One can apply the same steps for the optimality condition regarding risk-free bonds (28) and arrive at:

qft =Et

[
β̃

(
Ct+1

Ct

)−1

exp
{
σ2
θ,t+1

}]
(34)

Thus, we have established that if (33) and (34) hold, then at the conjectured no-trade allocations, all

households are behaving optimally by satisfying their Euler equations and that the allocation is indeed

an equilibrium.17

We can then define the effective ”representative stochastic discount factor” as:

Mt+1 ≡ β̃
(
Ct+1

Ct

)−1

exp
{
σ2
θ,t+1

}
(35)

And let us define a competitive no-trade equilibrium of the heterogeneous household model by utilizing

the unchanged equilibrium conditions from Section 2, as follows.

Definition 2. A competitive no-trade equilibrium of the heterogeneous household model is a collection

of stochastic processes for:

1. a price system {rt,Wt, R
k
t , R

l
t, Qt},

2. aggregate households’ consumption, deposits, and representative stochastic discount factor {Ct, dt+1,

Mt}

3. entrepreneurial consumption, net worth and leverage quantities and contractual cutoffs {Cet , Nt,

κt, ω̄t}

4. aggregate labor, investment and capital quantities, and new capital producers’ profits {Lt, It,Kt+1,Π
I
t }

5. individual household consumption and labor supply {ci,t, li,t}i∈[0,1]

such that equations: (1), (5), (7)–(11), (16)–(22), (26), (30), (31), (35), with Rdt = Rlt, di,t = dt, and

bfi,t = 0, where applicable, are satisfied, given the definitions of Ct and Lt, the stochastic processes for{
At, σ

2
θ,t, ηi,t

}
, and initial conditions

(
K0, E0, A0, σ

2
θ,0, {ηi,0}i∈[0,1]

)
.

17To fully establish optimality, we must also verify that a transversality condition for the deposits holds, by again applying
the law of iterated expectations and independence of εi,t across time and from the aggregate realizations:

0 = lim
T→∞

Eit
[
β̃T−tuc(ci,T , li,T )dT+1

]
= lim
T→∞

Et

 T∏
s=t+1

β̃ exp
{
σ2
θ,s

}C−1
T dT+1


which is satisfied if the aggregate economy is stationary and β̃ exp

{
σ2
θ,s

}
< 1 in the long run, as in the calibration applied

below.
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5 Quantitative Analysis of the Heterogeneous Household Model

5.1 Calibration

Compared to the representative household model’s calibration in Section 3.1, I follow the same set of

calibration targets as closely as possible. The only equilibrium conditions determining aggregates which

have changed are the stochastic discount factor employed in representing the households’ preferences over

the lending contracts, as now determined in (35), and the aggregate labor supply condition, now given

by (30). As for the former, I will leave the nonstochastic steady state level of idiosyncratic risk σ2
θ,ss

and the time discount factor of the heterogeneous households unspecified for now, and instead suppose

that:18

β̃ exp
{
σ2
θ,ss

}
= β = 0.99

This implies that the steady state risk-free interest rate in the heterogeneous household model is un-

changed compared to the representative household case in Section 2 and the effective representative

stochastic discount factor Mt+1 can be rewritten as:

Mt+1 = β

(
Ct+1

Ct

)−1

exp
{
σ2
θ,t+1 − σ2

θ,ss

}
The dynamics of the exogenous cyclical component of idiosyncratic risk captured by σ2

θ,t+1−σ2
θ,ss, under

various specifications, will be the main object of interest in the quantitative analysis below.

As for the households’ labor supply, for comparability, I will again ensure that to a first order the

aggregate labor supply condition exactly replicates that of the representative agent case in Section 2, and

in CFP. To see how this is possible, let us log-linearize (30), and plug in the steady state labor supply

condition to write:

ct +
Lss

1− Lss
lt = wt

where the lowercase letters again denote log-deviations of the corresponding aggregates from their steady

state values. Comparing this to the representative agent log-linearized labor supply condition seen in

Section 3.1, it is clear that in order to establish equivalence, we simply need to ensure Lss
1−Lss = 1

ηl
. So

given that CFP use ηl = 3, we need Lss = 1/4, which then pins down the required value of labor disutility

φ. Using the more common target of 1/3 of individuals’ time spent engaged in market activities, as often

done in the calibration of macroeconomic models, e.g. Hansen (1985), would decrease the aggregate

labor supply elasticity from 3 to 2.

Based on these choices, we have thus established that if σ2
θ,t = σ2

θ,ss,∀t, i.e. there is no time-varying

idiosyncratic labor risk, then the aggregate behavior of the heterogeneous household model and the

representative household model under logarithmic expected utility preferences is identical to a first order

– a convenient theroretical benchmark. Finally, even though we do not need to determine a specific

value of σ2
θ,ss for the calibration of the model based on the nonstochastic steady state, this value is

relevant for the model’s dynamics outside of the steady state, given the log-linear specification governing

σ2
θ,t that I introduce below.19 Using PSID data for 1968-1993, Storesletten et al. (2004) estimate an

annual specification for idiosyncratic labor earnings in which the stochastic part of log labor earnings

consists of a persistent (not necessarily unit root) and transitory component, and shocks to the persistent

18The nonstochastic steady state is one in which all aggregate shock innovations are set to zero while all idiosyncratic
shocks still exist.

19If we were to instead employ an analogous linear specification for σ2
θ,t − σ

2
θ,ss, one could also solve for the model’s

dynamics without having to specify a value for σ2
θ,ss.
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component have regime-switching conditional variance. Their estimates imply an annual autocorrelation

of idiosyncratic labor income of approximately 0.95 and conditional standard deviations of the persistent

shocks of 0.12 in aggregate expansions and 0.21 in contractions, with the frequency-weighted average

being 0.17. This average then roughly translates into a quarterly standard deviation of 0.085. Using the

average as a benchmark, I will consider the implied quarterly variance of σ2
θ,ss = 7.225 × 10−3 in what

is to follow.

5.2 Risk Sharing with Aggregate TFP Shocks and Flexible Prices

In the analysis of the representative household model, the goal was to determine which household pref-

erences yield optimality of the BGG contract of no financial risk sharing in response to a standard

aggregate TFP shock. For the heterogeneous household case with uninsurable idiosyncratic labor risk,

I follow a similar idea and ask: how does the households’ idiosyncratic labor risk captured by σ2
θ,t have

to vary in response to the aggregate TFP shock, so that households take on none of the financial risk

in the optimal contract. Moreover, given the flexibility that the Constantinides and Duffie (1996)-style

approach delivers, we can conduct a similar exercise for any conceivable aggregate shock that could hit

the economy, which I will do below.

In what is to follow, I will suppose that the log-deviation of uninsurable idiosyncratic labor risk

(variance) from its steady state value, denoted σ̂2
θ,t ≡ log

(
σ2
θ,t

σ2
θ,ss

)
, is stationary and persistent, and

exposed to innovations in the exogenous aggregate processes affecting the economy:

σ̂2
θ,t = ρθσ̂

2
θ,t−1 + Υ′εt (36)

where ρθ ∈ [0, 1). εt is a vector of aggregate shock realizations which includes the TFP shock εAt ∈ εt, and

any other aggregate shocks that might hit the economy. And Υ is a vector of parameters that capture

the exposure of idiosyncratic labor risk to each of these shocks. Considering various choices of ρθ, the

objective of my analysis is to determine the elements of Υ such that in response to any conceivable type

of shock contained in εt, the household takes on no financial risk in the optimal contract. In the flexible

price specification, I will assume that aggregate TFP shocks are the only source of aggregate uncertainty,

so Υ ≡ [ΥA] and εt ≡
[
εAt
]

are of length 1. In the case with nominal rigidities below, εt will also contain

monetary policy and capital quality shocks.

As pointed out by CFP, because of certainty equivalence in a first order approximation solution, the

behavior of the BGG and CFP models differs only with regards to the impact effects of any realized

exogenous shocks. That is, starting the two models off at any initial condition (K0, E0, A0), in the

absence of additional aggregate shocks being realized, they would yield identical equilibrium paths. This

in turn means that to establish equivalence of the BGG and CFP models with heterogeneous households

using time-varying labor risk σ2
θ,t, one would only need to specify how σ2

θ,t moves at the time of the

revelation of an exogenous aggregate shock in period t, and simply set σ2
θ,t+m = σ2

θ,ss for m ≥ 1. That

is, we could set ρθ = 0, and find the Υ0 that implies optimality of the BGG contract under σ̂2
θ,t = Υ′0εt.

However, supposing that idiosyncratic labor risk σ2
θ,t exhibits no persistence would be extreme and

counterfactual – for example, it can be seen in Storesletten et al. (2004) that the cross-sectional standard

deviation of idiosyncratic labor income innovations in the PSID exhibits persistence across time, similar

to the persistence in the cross-sectional mean of log income. Also, the calibration method employed by

Schmidt (2016) results in a persistence of the monthly AR(1) process for σ2
θ,t in excess of 0.98. Finally,

zero persistence in idiosyncratic labor risk would require unrealistically high responsiveness of σ2
θ,t to

macroeconomic shocks for the BGG contract to be optimal, as I elaborate below.
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As a final note, because σ2
θ,t has a natural lower bound of 0, there is a limit to how far the repre-

sentative stochastic discount factor Mt can fall due to drops in idiosyncratic labor risk, conditional on

aggregate consumption Ct. Because of this, in what is to follow, we must be careful when using solutions

relying on perturbation around the steady state because their precision can potentially deteriorate sig-

nificantly in the case of large aggregate shocks. Most importantly, if a very large quantitative exposure

of σ̂2
θ,t to TFP shocks is necessary for the BGG contract to be optimal, then for large TFP innovations

the implied approximation error in the optimal risk sharing condition

Γ′(ω̄t)

Γ′(ω̄t)− µG(ω̄t)
=
Mt

Me
t

might become significant since Mt ≥ β̃
(
Ct+1

Ct

)−1

, while this boundary is irrelevant for infinitesimal

fluctuations around the steady state. For this reason, I will not report simulation results for the case in

which ρθ = 0 and the required movements in σ̂2
θ,t are extreme. On the other hand, given that worries of

a lack of financial risk sharing usually arise under recessionary shocks which tend to imply increases in

idiosyncratic risk, these considerations are not an issue for studying the model’s behavior in crises.

Following the quantitative analysis of the representative agent model in Section 3, let us consider

TFP shocks with persistence ρA = 0.95 to be the sole exogenous shock in the model. Table 2 below

presents, for various values of ρθ, a selection of simulated second moments and the exposure of σ̂2
θ,t to

εAt necessary to yield an optimal lending contract in which the households take on none of the financial

risk associated with investing in capital. That is, the BGG and CFP models coincide, or in the notation

introduced above,
(
∂rlt
∂εAt

)/( ∂rkt
∂εAt

)
= 0.

If idiosyncratic labor risk exhibits no persistence, i.e. ρθ = 0, for the BGG contract to be optimal in

response to TFP shocks, one needs ΥA = −355.0. That is, in response to a 1% fall in TFP, log
(
σ2
θ,t

)
would have to increase by 3.55 points compared to its steady state value, implying an increase of σ2

θ,t

from 7.225 × 10−3 to approximately 0.251 and an increase of the standard deviation σθ,t from 0.085 to

0.502 – an effectively 6-fold increase in risk. Such a change in idiosyncratic risk is clearly larger than the

difference between expansions and recessions estimated by Storesletten et al. (2004), and unrealistic.

On the other hand, when idiosyncratic labor risk σ2
θ,t exhibits persistence, the exposure to innovations

in aggregate TFP required for the BGG contract to be optimal drops significantly. The main reason

for this is that now, the countercyclicality of households’ precautionary savings motives directly affects

aggregate dynamics. When the expected value of σ2
θ,t+1 drops after a positive TFP shock, all else equal,

households’ marginal return to saving in period t decreases since they face less uninsurable idiosyncratic

labor risk going forward. This increases the cost of external funds for firms and dampens the positive

response of investment and capital prices, thus reducing the implied volatility of aggregate financial

wealth in the economy.20 On top of the dampening effects on investment, the countercyclicality of the

precautionary savings motive also generates a countercyclical force on labor supply due to a wealth

effect: relatively larger increases in households’ consumption after positive TFP shocks push down their

labor supply, all else equal, leading to a less volatile aggregate output process. These effects can be seen

comparing the simulated second moments of the model with ρθ = 0.8 and ρθ = 0.95 in Table 2. Even

though the required exposure of σ2
θ,t to εAt is more than twice as small under ρθ = 0.95 compared to

ρθ = 0.8, the higher persistence is sufficient for the dampening effects of countercyclical precautionary

motives to increase with ρθ.

As for the implications regarding the required cyclicality of σ̂2
θ,t in response to TFP shocks when

20The idea that countercyclical precautionary motives tend to stabilize a real business cycle model is, for example,
discussed in more depth by Challe et al. (2017).
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Table 2: Exposure of idiosyncratic risk σ̂2
θ,t to TFP innovations ΥA, relative standard deviations of log

entrepreneurial net worth and leverage, absolute standard deviation of log output and investment, given

various combinations of persistence parameters ρθ, such that
(
∂rlt
∂εAt

)/( ∂rkt
∂εAt

)
= 0.0, ρA = 0.95, and

std
(
εAt
)

= 0.0072; simulation of 106 quarters.

ρθ ΥA
std(n)

std(y)

std(κ̂)

std(y)
std(y), % std(i), %

0.0 -355.0 – – – –
0.8 -31.3 1.023 0.248 2.539 2.475
0.95 -14.3 0.820 0.310 2.244 1.441

ρθ = 0.8, ΥA = −31.3 is necessary for the BGG contract to be optimal. That is, in response to a 1%

fall in TFP, the variance of the growth of log
(

θi,t
θi,t−1

)
must increase by a third, or more precisely, go

from σ2
θ,ss = 7.225× 10−3 to σ2

θ,ss = 9.880× 10−3. And the implied quarterly standard deviation would

increase by about 17% from 0.085 to 0.100 – when annualized, a change about three times smaller than

the differences estimated by Storesletten et al. (2004) between economic expansions and recessions.

Finally, when the persistence of idiosyncratic labor risk variance equals that of the TFP process, i.e.

ρθ = ρA = 0.95, the required exposure of idiosyncratic labor risk to TFP shocks drops to ΥA = −14.3.

In this case, in response to εAt = −0.01, the variance of the growth of log
(

θi,t
θi,t−1

)
must increase to

approximately σ2
θ,t = 8.336 × 10−3, and the quarterly standard deviation by about 7.5% to 0.091, from

the steady state value of 0.085.

Table 4 in Appendix A again compares the relative volatilities of HP-filtered model data to empirical

counterparts in the U.S. for the time period 1976Q1–2015Q3. Although the heterogeneous household

specification with persistent idiosyncratic labor risk is an improvement over the representative agent

model with log-log utilities, the introduction of the countercyclical precautionary savings motives damp-

ens aggregate volatility significantly. In what is to follow, I introduce nominal rigidities as done by BGG

and CFP. As emphasized by Challe et al. (2017), in a New Keynesian setting, countercyclical precau-

tionary savings motives introduce procyclicality in aggregate demand, thus generating a countervailing

amplification effect and potentially improving the heterogeneous household specification’s empirical per-

formance.

5.3 Risk Sharing with Nominal Rigidities

I will introduce nominal rigidities using the standard New Keynesian approach in which retail firms pur-

chase the production of the final good producers at ”wholesale prices”, transform this into differentiated

products and sell them to the household subject to monopolistic competition, while facing rigidities in

price setting. Since there are no nominal rigidities between the financial intermediary and the firms,

the contracting problem is unchanged. Given that the derivation of the framework is standard21, I will

simply comment on the newly introduced equilibrium objects and the equilibrium conditions which are

affected.

There will now be gross inflation Πt, an aggregate markup Xt (the ratio of the price of the retail

goods bundle relative to the wholesale price), and a gross nominal interest rate Rnt . The markup will

21For details see, for example, Gaĺı (2015).
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appear in final goods producers demand for labor and capital, equations (7) and (8) above:

Wt = X−1
t (1− α)AtK

α
t L
−α
t

rt = X−1
t αAtK

α−1
t L1−α

t

where Wt and rt are the real wage and rental rate. There is a Fisher equation that connects nominal

and real interest rates:

Et
[
Mt+1Π−1

t+1R
n
t+1

]
= 1

And the central bank sets a nominal interest rate following a Taylor rule:

Rnt+1 = Rnss (Πt/Πss)
φπ exp

{
zMt
}

where zMt captures exogenous movements in monetary policy, following zMt = ρMz
M
t−1 + εMt . And

Rnss = Πss/β is the steady state gross nominal interest rate. Finally, there is a New Keynesian Phillips

curve, which I will immediately introduce in linearized form, in log-deviations from steady state:22

πt = −κπxt + βEtπt+1

Following CFP, I use parameter values κπ = 0.025, φπ = 1.5 and ρM = 0.50.

In addition to the aggregate TFP and monetary policy shocks, the last shock I consider is a mean-zero

i.i.d. capital quality shock εKt , as has been studied in various general equilibrium macro-finance models

since the Great Recession, for example by Gertler et al. (2012). That is, I suppose that per unit of

capital Kt+1 installed by each firm at the end of period t, only a fraction exp
{
εKt+1

}
survives until the

beginning of period t+ 1, and is available for production and further capital accumulation.

Similarly as above in the flexible price case, I will look for the vector of exposures Υ ≡ [ΥA,ΥM ,ΥK ]
′

such that if idiosyncratic labor risk σ2
θ,t follows specification (36), the households take on no (real)

financial risk induced by any of the shocks in εt ≡
[
εAt , ε

M
t , ε

K
t

]′
. I will focus on the calibration with

persistent idiosyncratic labor risk ρθ = 0.95.

Table 3 presents the required exposures of σ̂2
θ,t necessary to imply an optimal contract in which the

households take on none of the financial risk associated with the TFP, monetary, and capital quality

shocks. For comparison with the analysis above, the table also includes selected second moments from

the model simulation when εAt , with a normal distribution and standard deviation of 0.0072 is the only

aggregate shock in the economy. For aggregate TFP shocks, the required exposure ΥA is higher in

Table 3: Exposure of idiosyncratic risk σ̂2
θ,t to TFP, monetary policy and capital quality innovations Υ,

relative standard deviations of log entrepreneurial net worth and leverage, absolute standard deviation

of log output and investment under TFP shocks, such that
(
∂rlt
∂εAt

)/( ∂rkt
∂εAt

)
= 0.0, ρA = ρθ = 0.95, and

std
(
εAt
)

= 0.0072; simulation of 106 quarters.

Shock (s) Υs
std(n)

std(y)

std(κ̂)

std(y)
std(y), % std(i), %

εAt -29.3 0.962 0.436 2.954 1.925
εMt 126.0 – – – –
εKt -41.6 – – – –

comparison to the flexible price case, increasing to -29.3. This is because under nominal rigities, as

22Given that I am employing a first-order approximation solution, the Phillips curve can be derived from assuming either
Calvo (1983) or Rotemberg (1982) pricing rigidities.
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foreshadowed above, the countercyclical precautionary savings motive introduces a destabilizing force

through procyclical demand effects. As households consume relatively more in response to a positive

TFP shock inducing a persistent fall in idiosyncratic labor risk, demand increases, markups drop, and

inflation is pushed up. In fact, as seen below, the effect of this channel is strong enough to make TFP

shocks inflationary in the current model, in contrast to them being deflationary in the textbook New

Keynesian model, with or without the BGG-style financial frictions. All in all, the total financial wealth

in the economy thus becomes more volatile, in turn requiring that households’ idiosyncratic labor risk

drop relatively more in expansions for it to be optimal that they do not acquire any of the unexpected

financial gains. ΥA = −29.3 implies that in response to a 1% unexpected fall in TFP, the standard

deviation of σθ,t would have to increase by about 15%, from 0.085 in steady state to about 0.098 at

shock impact. For reference, the implied annual volatility change is roughly three times smaller than the

differences estimated by Storesletten et al. (2004) between economic expansions and recessions.

Although the introduction of nominal rigidities in conjuction with the financial accelerator mechanism

amplifies the relative volatility of net worth and leverage and the absolute volatility of output and

investment compared to the flexible price case, the countercyclical precautionary savings motives of

households still weigh heavily on dampening investment fluctuations. And this keeps the volatility of the

latter below that of output. If one were to HP-filter the model simulated data, the implied volatility of

the cyclical component of investment would be closer to that of output due to the higher persistence of

the latter.

Figure 4 presents impulse responses to a 1% positive TFP shock over 28 quarters in the model with

nominal rigidities. As delivered by the exposure of idiosyncratic labor risk ΥA = −29.3, one can see the

(log) real lender return rlt not responding to the increase in productivity at impact. At the same time

the annualized real return to capital increases by 2.5 percentage points, and these unexpected returns

are fully acquired by the firms, pushing their net worth up and their leverage down. The main difference

in comparison to the aggregate dynamics of the representative household case with flexible prices is the

stabilizing effect introduced by the households’ countercyclical precautionary savings motives, slightly

counteracted by nominal rigidities and demand effects. The fall in precautionary savings increases firms’

cost of funds, as can be seen in by the increase in the required lenders’ real return going forward.

This weighs on investment, allowing it to increase by slightly more than 1%, dampening the positive

response in the price of capital and the returns to capital rkt . Also, as mentioned above, the TFP shock

is inflationary in the current calibration, with the (log) aggregate markup xt falling by 0.7 percentage

points, and the annualized inflation increasing by 100 basis points causing the central bank to increase

the policy rate by 150 basis points.

The required exposure of σ2
θ,t to monetary shocks εMt is ΥM = 126.0. Given that ΥM/100 measures

required log-changes in σ2
θ,t in response to a 100 basis point shock to quarterly nominal interest rates,

we can infer that in response to a more common 25 basis point increase in the annualized nominal policy

rate, idiosyncratic labor risk variance σ2
θ,t would have to increase by slightly less than a tenth. Or more

specifically, the implied standard deviation σθ,t would need to increase by about 4%, from 0.085 to 0.088.

Given nominal rigidities, the positive nominal rate shock decreases investment, capital prices, and the

financial wealth in the economy. A simultaneous increase in the households’ uninsurable idiosyncratic

risk makes them reluctant to take on any of this drop in financial wealth, pushing the burden fully onto

the firms, eroding their net worth and setting in motion the financial accelerator mechanism.

The impulse responses to an annualized 25 basis point contractionary monetary policy shock, i.e.

εMt = 0.0025/4 can be seen in Figure 5. As is common in the textbook New-Keynesian model, output,

investment and consumption drop at shock impact, all about 0.2%. Again, the exposure of idiosyncratic
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Figure 4: Impulse responses to 1% positive TFP shock in heterogeneous household model with nominal
rigidities, (100×) log-deviations from steady state, returns and inflation annualized, capital and lender
returns real; Horizontal axis – quarters.

labor risk ΥM = 126.0 implies an increase in σ2
θ,t just enough so that the return to lenders does not

drop at shock impact and the entrepreneurs suffer the full drop in the return to capital, eroding the

firms’ net worth. However, the households’ countercyclical precautionary savings motives significantly

reduce firms’ borrowing costs, allowing them to rebuild net worth and aggregate investment to revert

quickly, overshooting the steady state level already about a year out and exceeding it for most of the

transition back to steady state. Moreover, notice that even though the monetary policy shock εMt > 0

is contractionary, it causes inflation to drop enough that the central bank’s policy rule induces them to

relax monetary policy and decrease the policy rate by 40 basis points.

For it to be optimal that the households do not take on any financial risk associated with capital

quality shocks, we need ΥK = −41.6. In response to a 1% drop in capital quality, i.e. εKt = −0.01, the

standard deviation σθ,t would have to increase by about 23%, from 0.085 to 0.105. Or, following Gertler

et al. (2012) and extending this to a 5% decline in capital quality to consider a financial crisis such

as the Great Recession, the standard deviation would have to more than double – a relative increase of

approximately similar magnitude as the fluctuations between expansions and recessions that Storesletten

et al. (2004) estimated given PSID data for 1968–1993. Although, in absolute terms, the implied increase

in the annualized standard deviation from 0.17 to roughly 0.34 would be considerably larger than the

empirical difference of 0.12 and 0.21 between expansions and recessions.

Figure 6 presents impulse responses to a 5% negative capital quality shock in the model with nominal

rigidities. The drop in the capital stock causes consumption and output to drop by about 5% and 3%,

respectively. However, because the shock starts the economy off on a transition path to steady state

from a low level of capital, aggregate investment significantly exceeds its steady state value along the

path.23 Again, the increased precautionary savings motives of the households, implied by a high level

23Unlike Gertler et al. (2012), I have not altered any details of the model such as introducing GHH utility or habit
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Figure 5: Impulse responses to annualized 25 basis point contractionary monetary policy shock in het-
erogeneous household model with nominal rigidities, (100×) log-deviations from steady state, returns
and inflation annualized, capital and lender returns real; Horizontal axis – quarters.

of σ2
θ,t, help the economy rebuild the capital stock and revert to steady state faster. Since the capital

quality shock is highly deflationary, the central bank responds and decreases the nominal policy rate by

more than 10 percentage points. Although I have not specificed the level of the steady state inflation and

thus the nominal rate, this drop would quite clearly violate the zero lower bound, which is not currently

imposed in the model. Thus, a nonlinear solution which imposes the ZLB could lead to a considerably

more severe crisis caused by the capital quality shock.

The last row of Table 4 in Appendix A compares the relative volatilities of HP-filtered model data

if the TFP shock is the only aggregate disturbance, to empirical counterparts in the U.S. for the time

period 1976Q1–2015Q3. As expected, the nominal rigidities allow the countercyclical precautionary

savings motive to become an amplifying force, bringing the standard deviation of output in the model

closer to that seen in the data. Yet to improve the model’s fit to the data, one must necessarily consider

a larger selection of aggregate disturbances than simply productivity shocks, which however, is outside

the scope of the current paper.

Finally, in the scope of the exercise above, the high persistence of ρθ = 0.95 has allowed to exemplify

that at low exposures of idiosyncratic risk to various aggregate shocks, as captured by Υ, the optimal

contract implies non-state-contingent returns to the households. Even though reaching the contract

assumed by BGG as the privately optimal one is in itself a valid theoretical target, the dampening effects

of a high ρθ mask the economy’s ability to amplify the effects of aggregate shocks and yield slightly

surprising impulse responses – such as investment contracting less than consumption in response to a

contractionary monetary policy shock. To showcase how the economy with countercyclical labor risk

and optimal contracting can considerably amplify the effects of aggregate shocks and exhibit dynamics

formation in households’ preferences or using a lower intertemporal elasticity of substitution in order to have investment
drop after a negative capital quality shock.
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Figure 6: Impulse responses to 5% negative capital quality shock in heterogeneous household model with
nominal rigidities, (100×) log-deviations from steady state, returns and inflation annualized, capital and
lender returns real; Horizontal axis – quarters.

distinctive to the financial accelerator mechanism, I will consider a persistence of idiosyncratic risk equal

to that of the monetary policy shock ρθ = ρM = 0.5, and increase the exposure ΥM , so that the economy’s

impulse responses to a monetary policy shock are similar to those of the BGG model.

For comparability, I will follow CFP and compute the economy’s response to a 25 bp quarterly con-

tractionary monetary policy shock if ΥM = 0.0, i.e. the economy is equivalent to the representative

agent CFP model, and if ΥM = 1100.0. At ΥM = 1100.0, a 25 bp annualized shock would require σθ,t

to increase from 0.085 in steady state to 0.1199 at shock impact – a considerable increase. Figure 7

below plots the results. The impulse responses in the economy with countercyclical idiosyncratic labor

risk and optimal financial contracting are strikingly similar to those in the benchmark BGG model, as

seen in Figure 4 in Carlstrom et al. (2016), and exhibit considerable amplification over and above the

representative agent CFP model. Even though there is some financial risk sharing of the monetary policy

shock, seen in the drop of lender returns in both cases, the relative share of the capital return innovation

taken on by the household, i.e.
(
∂rlt
∂εMt

)/( ∂rkt
∂εMt

)
, is about 1.13 in the model without, and 0.30 in the

case with countercyclical idiosyncratic risk. Given that I have introduced the fluctuations in idiosyn-

cratic uncertainty exogenously, brought about by the monetary policy shock, one could also think of the

exercise as computing the response to a joint incidence of standard monetary policy and idiosyncratic

uncertainty shocks. As studied by Basu and Bundick (2017), shocks which increase uncertainty in a New

Keynesian framework generate a joint drop in consumption and investment, facilitated by countercyclical

markups. This explains why the economy with added countercyclical idiosyncratic risk is able to generate

amplification similar to the BGG model even though some of the aggregate financial risk in the contracts

between households and firms is taken on by the former, and the financial accelerator channel itself is

slightly dampened in comparison to a case with no financial risk sharing.

The above therefore illustrates how a variation of the benchmark representative household framework
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Figure 7: Impulse responses to quarterly 25 basis point contractionary monetary policy shock in hetero-
geneous household model with nominal rigidities and ρθ = 0.5, (100×) log-deviations from steady state,
returns and inflation annualized; Blue solid – ΥM = 0.0 (representative agent CFP model), red dashed
– ΥM = 1100.0; Horizontal axis – quarters.

can further justify privately optimal contracts in which firms borrowing from households take on a

significant amount of aggregate financial risk. Fully non-state-contingent lender returns and amplification

of aggregate shocks are reached under logarithmic utility over consumption for both the households and

the representative entrepreneur, while uninsurable idiosyncratic risk exhibits countercyclical fluctuations

of realistic magnitudes.

6 Conclusion

Privately optimal aggregate risk sharing is significantly affected if a party is relatively more risk averse

or faces uninsurable time-varying idiosyncratic risk. This paper exemplifies these ideas in a reformula-

tion of the workhorse Bernanke et al. (1996) (BGG) model with financial frictions and analyzes their

quantitative relevance for the implied aggregate dynamics. In response to aggregate total factor produc-

tivity shocks, non-state-contingent lender returns, as initially imposed by BGG, are privately optimal

if the lending household has a coefficient of risk aversion parameter of 13.2 with unitary elasticity of

intertemporal subsitution. Alternatively, the same outcome follows when the household has CRRA-type

expected utility preferences with a risk aversion coefficient of 5.92. In a tractable no-trade equilibrium

with rich consumption heterogeneity, building on the insights of Constantinides and Duffie (1996), non-

state-contingent lender returns are shown to arise when households have logarithmic utility and face

an uninsurable idiosyncratic labor productivity process that features persistent countercyclical risk of

empirically plausible magnitudes.

Moving away from a simple two-agent setting with identical preferences, the virtual irrelevance of

financial frictions for aggregate dynamics can disappear, even if agents are allowed to write privately
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optimal contracts to surmount these frictions. The time-varying uninsurable idiosyncratic risk faced by

a party considered in this paper is only one of such plausible deviations from the benchmark. Other

examples include informational asymmetries and trading frictions, such as studied by Asriyan (2015).

Whether the mechanism detailed here is operative in the data is yet to be determined in further research.

It is nontheless evident that the ultimate effect of financial frictions on the aggregate economy can

significantly depend on other imperfections present in the environment.
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Appendix

A HP-filtered Second Moments from the Model and US Data

Table 4: Relative standard deviations of entrepreneurial log net worth (n) and leverage (κ̂), absolute
standard deviation of log output y (in percentages), in representative and heterogeneous agent models;
HP-filtered model data from simulation of 106 quarters; US data on non-financial business sector net
worth and leverage, output as Gross Value Added of non-farm business sector; HP parameter 1,600.

std(n)

std(y)

std(κ̂)

std(y)
std(y),%

Data (76Q1–15Q3) 2.038 0.856 1.884

Representative agent baseline
ρA ξ, ψ

0.95
1.0, 1.0 0.845 0.109 0.958
13.2, 1.0 2.098 0.996 1.107
5.92, 1/ξ 2.069 1.005 1.115

0.99
1.0, 1.0 0.838 0.152 0.940
4.34, 1.0 1.941 0.941 1.062
2.57, 1/ξ 1.549 0.767 0.989

Heterogeneous agent extension
ρA, ρθ ΥA

0.95, 0.80 -31.1 1.041 0.516 1.258
0.95, 0.95 -14.3 0.934 0.470 1.224

0.95, 0.95 (nom. rig.) -29.3 1.004 0.541 1.632

Assets measured as Nonfinancial Assets (FOFA Tables B.103 and B.104, line 2), debt as the sum of Loans (FOFA Tables

B.103 and B.104, lines 30 and 27, respectively) and Debt Securities (FOFA Table.103, line 26) – all measured at market

values. Net worth = Assets −Debt , Leverage = Assets/Net worth. GVA measure from NIPA-BEA Table 1.3.5 line 3. All

variables deflated by the implicit price index for the nonfarm business sector (NIPA-BEA Table 1.3.4, line 3).

B Entrepreneurs’ Problem in the CFP Model and Equivalence

to the log-Utility Representative Entrepreneur

This Appendix establishes the first order equivalence of the equilibrium in the CFP model and the model

presented in Section 2 by comparing first order approximations of the equilibrium conditions which differ

across the two.

B.1 CFP Model

B.1.1 Entrepreneurs’ equilibrium conditions

For more details on the entrepreneurs’ problem in the CFP model see Carlstrom et al. (2016). The

bottom line is that in the CFP model, the optimality conditions for an entrepreneur’s problem can be

combined into the following Bellman equation, laws of motion and first order condition in the equilibrium
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variables {Vt, Cet , Nt, ω̄t, κt}:

Vt = (1− γ) + γβCFPe Et
{
Vt+1[1− Γ(ω̄t+1)]Rkt+1

}
κt (37)

Cet = (1− γ)[1− Γ(ω̄t)]R
k
t κt−1Nt−1 (38)

Nt = [1− Γ(ω̄t)]R
k
t κt−1Nt−1 − Cet (39)

Γ′(ω̄t)

Γ′(ω̄t)− µG(ω̄t)
=

(
γβCFPe

Vt
Vt−1 − (1− γ)

)−1

Mt (40)

Plus the participation constraint (15), which effectively determines κt. Since these and all other equilib-

rium conditions are necessarily identical across the two models, I will not focus those. For brevity, let us

denote the left hand side of (40) with the increasing function Ψ(ω̄t).

B.1.2 Steady state

In the non-stochastic steady state, combining (38) and (39) gives:

1 = γ[1− Γ(ω̄)]Rkκ (41)

And using this in (37) yields:

V = (1− γ) + γβeV [1− Γ(ω̄)]Rkκ⇒ V =
1− γ
1− βe

(42)

And (40), combined with (37) yields:

Ψ(ω̄) = M

(
γβeV

V − (1− γ)

)−1

= M

(
γβeV

βeV

)−1

= Mγ−1 (43)

Thus, (42) separately determines V , and (41) and (43) alongside the remaining equilibrium conditions

determine the rest of the steady state values.

B.1.3 First order dynamics

As mentioned in Section 2.3.1, (38) and (39) are exactly identical in the two models, given γ = βe and

Ũ(C) = logC in the model of Section 2.1, so their equivalence follows trivially. Also, to save on notation,

I will denote Xr
t ≡ [1−Γ(ω̄t)]R

k
t κt−1 in log-linearizing (37), as this product shows up in the same manner

in both of the models.

Log-linearizing (37) gives, using the fact that in steady state γXr = 1:

vt = βCFPe Et
{
vt+1 + xrt+1

}
(44)

And log-linearizing (40), using the fact that in steady state V − (1− γ) = βeV , yields:

Ψ′(ω̄)ω̄

Ψ(ω̄)
ω̂t = mt −

(
vt −

1

βe
vt−1

)
(45)
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B.2 Representative entrepreneur model

B.2.1 Entrepreneurs’ equilibrium conditions

Following the analysis in Sections 2.2.4 and 2.3.1, if the entrepreneur has logarithmic utility Ũ(C) =

log(C), one can write the equilibrium conditions determining {Vt, Cet , Nt, ω̄t+1, κt} as:

Vt =
1

Cet
(46)

Cet = (1− βe)[1− Γ(ω̄t)]R
k
t κt−1Nt−1 (47)

Nt = [1− Γ(ω̄t)]R
k
t κt−1Nt−1 − Cet (48)

Ψ(ω̄t) = Mt

(
βe

Vt
Vt−1

)−1

(49)

Plus the participation constraint (15), which again effectively pins down κt. As discussed in Section

2.3.1, the result that under log-utility, consumption is a constant fraction of equity can be reached by

employing (48) and the entrepreneurs’ Euler equation (16), with the latter now being replaced by (47).

As mentioned, (47) and (48) are identical across the two models.

B.2.2 Steady state

In steady state, combining (47) and (48) implies:

1 = βe[1− Γ(ω̄)]Rkκ (50)

And (49) implies

Ψ(ω̄) = Mβ−1
e (51)

which are identical to (41) and (43) whenever γ = βe, so the two models have exactly the same non-

stochastic steady states, apart from the value of V which in this case is pinned down by

V =
1

Ce
(52)

B.2.3 First order dynamics

Log-linearizing (49) directly yields:

Ψ′(ω̄)ω̄

Ψ(ω̄)
ω̂t = mt − (vt − vt−1) (53)

which is equivalent to (45) whenever βCFPe → 1.

And finally, because the Euler equation for the entrepreneur must still be satisfied by Vt, even though

now redundant, it is necessarily the case that Vt satisfies

Vt = βeEt
{
Vt+1[1− Γ(ω̄t+1)]Rkt+1

}
κt

⇒ vt = Et
{
vt+1 + xrt+1

}
(54)

which is equivalent to (45) whenever βCFPe → 1.
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So we have established the equivalence of the five equilibrium conditions relevant for determining

the outcome of the entrepreneurs’ problem in these two log-linearized models whenever βCFPe → 1 and

γ = βe.

C Properties of the Idiosyncratic Labor Productivity Process

The analysis in Sections 4 and 5 treats the variance of the growth of the idiosyncratic consumption

component log(θi,t) as the main measure of idiosyncratic labor risk, while leaving unspecified the exact

stochastic properties of the actual fundamental labor productivity process ηi,t that facilitates such a

behavior of equilibrium household consumption. This Appendix provides further details on the implied

stochastic properties of ηi,t and argues that in the no-trade equilibria studied, the implied behavior of

household i’s labor productivity growth gηi,t ≡
ηi,t
ηi,t−1

is very similar to the growth gθi,t in the idiosyn-

cratic consumption component that it is supposed to facilitate in equilibrium, with gθi,t ≡
θi,t
θi,t−1

being a

lognormal random variable.

To elaborate upon the implied stochastic properties of ηi,t, let us rewrite (32) in t by plugging in for

(1 + φ)θi,t−1Ct−1 from (32) itself in t− 1:

ηi,t =
1

Wt

{
θi,t
θi,t−1

Ct
Ct−1

[Wt−1ηi,t−1 − st−1] + st

}
where for brevity, st ≡ dt+1 − Rdt dt − ΠI

t denotes net financial savings in period t. We can then write

household i’s implied labor productivity growth as:

gηi,t =Φ1i,tg
θ
i,t + Φ0i,t

where

Φ1i,t ≡
Ct
Ct−1

Wt−1

Wt

[
1− st−1

Wt−1

1

ηi,t−1

]
Φ0i,t ≡

st
Wt

1

ηi,t−1

This means that conditional on ηi,t−1 and aggregate shocks up to t, gηi,t has a three-parameter lognormal

distribution, with Φ0i,t being the threshold parameter.

Unsurprisingly, we see that the conditional distribution of labor productivity growth gηi,t =
ηi,t
ηi,t−1

must

depend on the prior level of productivity ηi,t−1, even though the growth of the idiosyncratic consumption

component gθi,t is i.i.d. across time. This is because we are imposing that the distribution of consumption

growth is identical across households, while all households hold the same financial portfolio. This means

that depending on the precise path of {θi,t}t experienced by household i over time, the shares of human

and financial wealth in its total wealth will differ. And because in each period, i’s consumption equals

the difference between labor income and net financial savings, a percentage change in consumption will

be consistent with different percentage changes in labor income, depending on the relative size of st

and ci,t.
24 Because of this, any comparison of the properties of gηi,t and gθi,t below will necessarily be

contingent on the distribution of ηi,t−1 considered, as reported.

If it was the case that Φ0i,t = 0, then gηi,t would be exactly lognormal, conditional on ηi,t−1 and

aggregate shocks up to t. Although this is not exactly true in the model, st
Wt

is actually small in the

nonstochastic steady state and its proximity. This simply follows from the fact that since ΠI
ss = 0, we

24Put simply, if ci = wi − s, then the elasticity of ci with respect to wi depends on the magnitude of s relative to wi.
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have that sss = (1 − Rlss)dss = (1 − 1/β)dss. Thus, if ηi,t−1 is not too small, then Φ0i,t is close to zero

and the distribution of gηi,t conditional on aggregates and ηi,t−1 is barely distinguishable from that of a

lognormal variable. Moreover, for the same reasons, near the steady state, Φ1i,t is close to 1, implying

that the conditional distribution of gηi,t is actually close to that of gθi,t. To illustrate this, Figure 8

below compares the histograms of a sample of gθi,t and the corresponding gηi,t in the nonstochastic steady

state of the flexible price heterogeneous household model calibration studied in Section 5.2, conditional

on ηi,t−1 = 1. More specifically, in that case, Φ0i,ss = 1 − Φ1i,ss = −0.109. It is clear that the two

distributions are virtually indistinguishable.

Figure 8: Histograms of log(gθi,t), and the corresponding log(gηi,t), conditional on ηi,t−1 = 1 in the steady
state of the baseline calibration of the flexible price heterogeneous household model; based on a sample
of 106 draws.

The cross-sectional distributions of gηi,t over time remain very close to that of gθi,t when we allow

the aggregate economy to evolve subject to aggregate TFP shocks. Figure 9 plots the time series of

the first four moments in the cross-section of log(gθi,t) and log(gηi,t) for a simulation of the aggregate

economy for T = 1000 quarters, given the baseline calibration with ΥA = −14.3, ρθ = ρA = 0.95, and

std(εAt ) = 0.0072, and given ηi,t−1 = 1. The similarity between the series is stark, explained by the fact

that over the sample, the terms Φ0i,t and Φ1i,t vary little, with the standard deviations across time being

approximately std(Φ0i,t) ≈ std(Φ1i,t) ≈ 8.2× 10−4.

Although the above has established that given ηi,t−1 = 1, the behaviors of gηi,t and gθi,t are virtually

indistinguishable, things might not be as clear when we allow for the cross-sectional distribution of θi,t

and ηi,t to evolve. Large discrepancies from such similarities can arise especially because the cross-

sectional dispersion in ηi,t can lead to large differences in the implied labor productivity variance that

households face. Moreover, because log(gθi,t) follows a random walk, θi,t and ηi,t do not have stationary

cross-sectional distributions. To facilitate stationarity of the distribution of θi,t and ηi,t, one can directly

follow Constantinides and Duffie (1996) and assume that each household has a conditional probability

of survival $ ∈ (0, 1) between periods t and t+ 1. If a household dies between t and t+ 1, it receives no

utility from period t + 1 onwards, and its financial wealth is transferred to a ”newborn”, with ”identity
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(a) mean (b) standard deviation

(c) skewness (d) kurtosis

Figure 9: Time series of the first four moments of the cross-section of log(gθi,t) and log(gηi,t) at different

points in time for a simulation of the aggregate economy for T = 1000 quarters and N = 105 individuals,
given baseline calibration with ΥA = −14.3, ρθ = ρA = 0.95, std(εAt ) = 0.0072, and given ηi,t−1 = 1

label” i, for whom the initial ηi,t+1 is the productivity consistent with θi,t+1 = 1. If the households in

this specification have a time discount factor β̄ = β̃/$, then the behavior of the aggregate economy is

identical to that of the model introduced in Section 4. At the same time, the distribution of θi,t and ηi,t

is stationary, with each agent’s expected lifetime being 1
1−$ periods.

To examine the behavior of ηi,t given a stationary distribution, I choose $ = 0.9815 to imply that

95% of the households are expected to have an active work life of at most 160 quarters, or 40 years. I

then generate a stationary distribution of θi,t in the model’s nonstochastic steady state, and compare

both the distributions of θi,t and ηi,t, and the implied distributions of gθi,t and gηi,t that these agents

face. Figure 10 plots the stationary distributions of log(θi,t) and log(ηi,t), truncated at the 0.01% and

99.9% levels.25 The implied stationary distributions of the idiosyncratic components of consumption and

individual labor productivities are again barely distinguishable.

Finally, Figure 11 depicts a sample of the cross-section of growth rates log(gθi,t) and log(gηi,t) condi-

tional on a stationary distribution of households. That is, for each of the 105 households in the stationary

distribution of (θi,t−1, ηi,t−1), I draw an idiosyncratic shock εi,t, and compute the implied cross-section

25Because sss < 0, it can potentially happen that if household i’s θi,t → 0, the implied labor productivity ηi,t < 0.
However, in the simulated sample, such cases are highly unlikely, occurring for about 0.02% of the individuals in the
stationary distribution.
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Figure 10: Stationary distributions of log(θi,t), and the corresponding log(ηi,t), in the steady state of
the baseline calibration of the flexible price heterogeneous household model; based on a sample of 105

individuals, given survival probability $ = 0.9815.

of growth rates gθi,t and gηi,t. Clearly, because gθi,t is i.i.d. across agents and time by assumption, the

top panel in this Figure must be identical to the top panel in Figure 8, up to sampling variation. The

only difference between Figures 8 and 11 is the distribution of ηi,t−1 which we are conditioning upon.

What is striking, however, is that the implied cross-sectional distribution of gηi,t in Figure 11 is still

indistinguishable from that of gθi,t. It is noteworthy because, as seen above, ηi,t−1 affects the conditional

distribution of gηi,t faced by household i. For example, the distributions of gθi,t and gηi,t would visibly

differ if we conditioned the computations in Figure 11 on, say ηi,t−1 = 0.01,∀i. But even though the

stationary distribution of ηi,t exhibits nontrivial variation, as seen in the bottom panel of Figure 10, this

variation is not large enough to have any significant effects on the ”average” distribution of growth rates

of ηi,t faced by the households. Thus, we can conclude that on the whole, there is very little difference

in the stochastic properties of the idiosyncratic consumption component θi,t and the idiosyncratic labor

productivity process ηi,t faced by the households in the economy, and the treatment of the variance of

growth in θi,t as a measure of households’ idiosyncratic labor risk in Sections 4 and 5 is validated.
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Figure 11: Cross-sectional distributions of growth rates log(gθi,t) and log(gηi,t) faced by households given
the stationary distributions of θi,t and ηi,t, in the steady state of the baseline calibration of the flexible
price heterogeneous household model; based on a sample of 105 individuals, given survival probability
$ = 0.9815.
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