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Abstract. A seminal result in the ICA literature states that for AY =
ε, if the components of ε are independent and at most one is Gaussian,
then A is identified up to sign and permutation of its rows [Comon, 1994].
In this paper we study to which extent the independence assumption can
be relaxed by replacing it with restrictions on the cumulants of ε. We
document minimal cumulant conditions for identifiability and propose
efficient estimation methods based on the new identification results. In
situations where independence cannot be assumed the efficiency gains
can be significant. The proof strategy employed highlights new geomet-
ric and combinatorial tools that can be adopted to study identifiability
via higher order restrictions in linear systems.

1. Introduction

Consider the linear system

(1) AY = ε ,

where Y ∈ Rd is observed, A ∈ Rd×d is invertible, and ε is a mean-zero hid-
den random vector with uncorrelated components. If ε is standard Gaussian
then the distribution of Y can identify A only up to orthogonal transforma-
tions. In contrast, if the components of ε are mutually independent and at
least d − 1 are non-Gaussian, then A can be identified up to permutation
and sign transformations of its rows [e.g. Comon, 1994]. This result follows
from the Darmois-Skitovich theorem [Darmois, 1953, Skitivic, 1953] and
forms the building block of the vast literature on independent components
analysis (ICA) [e.g. Hyvärinen et al., 2001, Comon and Jutten, 2010].

As implied by its name, the working assumption in the ICA literature is
that the components of ε are independent. For some applications this is an
important starting principal as the interest is explicitly in recovering the in-
dependent components, see for instance the cocktail party problem described
in Hyvärinen et al. [2001, p. 148]. However, in other applications, where the
interest is solely in recovering A, the independence assumption is not a cru-
cial starting point and can in fact be restrictive as the distribution of Y may
not admit a linear transformation that leads to independent components [e.g.
Matteson and Tsay, 2017, Kilian and Lütkepohl, 2017, Montiel Olea et al.,
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2022]. Prominent examples include elliptical distributions and mixtures-of-
Gaussians where generally no linear mapping to independent non-Gaussian
components exists.1

To this extent, in this paper we study minimal assumptions that (i) relax
the independence assumption yet (ii) assure the identifiability of the matrix
A from observations of Y . We generally normalize var(ε) = Id which implies
that var(Y ) = (A′A)−1 and narrows down the identification problem to the
compact set Ω = {QA : Q ∈ O(d)}, where O(d) is the set of d-dimensional
orthogonal matrices. This refinement allows to formally state our research
question: Which higher order restrictions on ε allow to identify a finite,
possibly structured, subset of Ω?

We systematically study our question by considering different restrictions
on the higher order cumulants of ε. We focus on cases where a subset of
entries of a given rth order cumulant tensor are set to zero, for some r > 2.
Although there are alternative types of restrictions that can be considered,
zero restrictions are particularly attractive as they can characterize inde-
pendence but also various relaxed notions of independence such as mean
independence for instance.2

We distinguish between two types of identification results: (i) cumulant
restrictions that imply that the identified set is exactly the set of signed
permutation matrices and (ii) cumulant restrictions that imply that the
identified set is finite. A general important finding is that there exists a
substantial gap between (i) and (ii) in the sense that identified finite sets are
often substantially larger when compared to the set of signed permutations.

We provide two classes of cumulant restrictions that identify the set of
signed permutation matrices. First, we consider the class where the off di-
agonal elements of any given tensor are all zero. Such off diagonal cumulant
restrictions are often adopted for estimation in the ICA literature under
the independence assumption.3 We show that, without imposing the inde-
pendence assumption, if we set the off-diagonal elements of any rth order
cumulant tensor to zero we obtain sufficient identifying restrictions to pin
down Q up to sign and permutation. We point out that for r = 3, 4 similar
results are shown in Guay [2021] and Velasco [2022] using a different proof
strategy.4

Second, while off-diagonal zero restrictions are commonly adopted, they
cannot always be used when the components of ε are not independent. For
instance, if ε follows a symmetric distribution the odd order tensors are

1See Proposition 2.2 and Corollary 2.4 for precise statements.
2Section 4 explicitly relates zero restrictions on higher order cumulants to mean inde-

pendence and other relaxations of independence.
3For instance the JADE algorithm of Cardoso and Souloumiac [1993] is based on diag-

onalizing the fourth order cumulant tensor.
4Specifically, they show that the identified set is equal to the set of signed permutations

using direct calculations for r = 3, 4. As we show below such calculations do not scale
easy for higher order cumulant restrictions, nor non-diagonal restrictions.
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all zero and provide no restrictions, but the even order tensors may not
be diagonal as is the case for elliptical distributions. This motivates our
second class of tensor restrictions, which we refer to as reflectionally invariant
restrictions, where the only non-zero tensor entries are those where each
index appears even number of times. This provides a strict relaxation of
the diagonal tensor assumption and we show that this assumption remains
sufficient to identify Q up to sign and permutation.

Overall, diagonal and reflectionally invariant restrictions are most relevant
for practical purposes, especially for low order tensors r = 3, 4, as efficient
estimation methods can be easily implemented based on such identifying
assumptions.

Next, we turn to exploring the identification problem in its full generality.
We provide the minimal cumulant conditions under which the identified set
is finite. It turns out that these restrictions are easy to understand and
interpret, but the resulting identified set can be difficult. We illustrate this
”identification gap”, i.e. the gap between finite and sign-permutation sets,
using simple examples and discuss possible additional restrictions that may
close the gap in general settings.

Based on our identification results we develop a novel class of generalized
cumulant estimators for estimating A in (1). The class includes existing
cumulant tensor based estimators, such as the JADE algorithm, as special
cases, but also introduces new estimators. We show that estimators in this
class are consistent and asymptotically normal under standard regularity
conditions. Moreover, we show that a particular subset of estimators in
this class is efficient for model (1) when the only identifying restrictions are
the zero cumulant restrictions. Finally, we provide several hypothesis tests
for the ex-post verification of the validity of the zero cumulant restrictions.
These tests are useful to (a) validate the overall model specification and (b)
evaluate specific subsets of cumulant restrictions.

The ICA literature is large and for a comprehensive review we refer to
Hyvärinen et al. [2001] and more recently Comon and Jutten [2010]. Overall,
our main contribution is to study the identification problem for model (1)
when the components of ε are not independent.

The starting observation — independent components may not exists —
is not new to this paper. In fact, such concerns were common in the early
ICA literature, see Comon and Jutten [2010, Chapter 1] for an illuminating
discussion, and they motivated explicit tests for the existence of independent
components [e.g. Oja et al., 2016, Matteson and Tsay, 2017, Davis and Ng,
2022].

There exists numerous methods for estimation and inference in indepen-
dent components models: e.g. cumulant and moment based methods [Car-
doso, 1989, Cardoso and Souloumiac, 1993, Cardoso, 1999, Hyvärinen, 1999,
Lanne and Luoto, 2021, Drautzburg and Wright, 2021], kernel methods Bach
and Jordan [2002a], maximum likelihood methods Chen and Bickel [2006],
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Samworth and Yuan [2012], Lee and Mesters [2021] and rank based methods
Ilmonen and Paindaveine [2011], Hallin and Mehta [2015].

Based on our new identification results the aforementioned methods could
be adopted/modified to relax the independence assumption. We perform
this task for cumulant based estimation methods, but clearly other methods
could be modified as well. For measurement error models related cumulant
based estimators have been developed in Geary [1941] and Erickson et al.
[2014]. The difference in their setting is that the parameters of interest
can be written as a linear function of the higher order cumulants of the
observables. For model (1) this is not possible.

Finally, we note that our approach is different from methods that intro-
duce an explicit alternative dependence structure on ε and aim to recover
A with respect to this structure, for instance Cardoso [1998] and Hyvärinen
and Hoyer [2000] group the components of ε into independent groups and
Bach and Jordan [2002b] impose a tree-structured graphical model on ε. In
contrast, our approach does not pre-specify a particular structure on ε, but
rather investigates which types of cumulant restrictions, can yield identifi-
cation.

The remainder of this paper is organized as follows. Section 2 provides
motivating examples where independent components do not exist. Section
3 defines some cumulant notation and reviews relevant existing results. The
general problem that we study is introduced in Section 4. The new identifi-
cation results are discussed in Sections 5 and 6. Inference is discussed in 7
followed by some numerical results in 8.

2. Motivation: independent components may not exist

Independent components analysis assumes that there exists a linear trans-
formation of Y that results in a set of independent components ε. For Gauss-
ian Y this is indeed true, but for many non-Gaussian distributions it is not.
We briefly mention a few important examples.

2.1. Elliptical distributions. A particularly broad class of distributions
where the existence of independent components largely fails is the elliptical
class; see Kelker [1970] for a detailed discussion.

Definition 2.1. A random vector X ∈ Rd has an elliptical distribution if
there exists µ ∈ Rd and a positive semi-definite matrix Σ such that the
characteristic function of X is of the form t 7→ ϕ(t′Σt) exp(iµ′t) for some
ϕ : [0,∞) → R.

Important special cases include the multivariate normal, Laplace and t-
distributions. The following result implies that linear transformations that
lead to independent components generally do not exist in the elliptical world.

Proposition 2.2. A linear transformation of an elliptical random vector Y
has independent components if and only if Y is Gaussian.
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Proof. The family of elliptical distributions is closed under taking linear
combinations. So if Y is elliptical then so is AY . By Lemma 5 of Kelker
[1970] AY can have independent components if and only if it is Gaussian.
But then Y must be Gaussian. □

By Proposition 2.2, if Y is elliptical (but not Gaussian) and AY = ε for
some ε with Eε = 0 and var(ε) = Id, then there exist no independent com-
ponents and the classical ICA identification result of Comon [1994] cannot
be used to establish identification of A. On the other hand, this situation is
still relevant for applications as the dependence between the components of
ε remains rather weak. As shown by Rossell and Zwiernik [2021], for such
elliptical vector ε, εi is uncorrelated with any function of εj for all i ̸= j,
or equivalently, E(εi|εj) = E(εi) = 0, which leads to the concept of mean
independence that can be implemented by restricting higher order cumulant
restrictions as we show below.

2.2. Gaussian mixture. Consider the following mixture of two zero-mean
Gaussians:

X ∼
{

N (0,Σ1) w.p. 1− γ
N (0,Σ2) w.p. γ

.

Linear transformations of X, say BX for an invertible B ∈ Rd×d, preserve
the mixture distribution: BX is a mixture of zero-mean Gaussians with
the same mixture parameter γ and the covariance matrices transformed
accordingly.

The following result highlights the special cases under which two mixtures
of Gaussian distributions admit independent components.

Proposition 2.3. Suppose that X has a distribution which is a mixture of
two zero mean Gaussian distributions with covariances Σ1 and Σ2. If the
components of X are independent then at most one of the components of X
is non-Gaussian. If exactly one is non-Gaussian then both Σ1 and Σ2 must
be diagonal and differ in at most one (diagonal) entry.

Proof. The proof is provided in Appendix B.2. □

Recall that in the classical ICA setting, the components of ε must be
independent and at most one of them is Gaussian. If ε is assumed to have
the mixture distribution we immediately see that recovering A in (1) is not
possible given the standard ICA assumptions.

Corollary 2.4. For d ≥ 3, we have that a linear transformation of a random
vector Y , which follows a mixture of two zero mean Gaussian distribution,
cannot satisfy the standard non-Gaussianity assumption for identification
in ICA, i.e. the components of the linear transformation cannot be both (i)
independent and (ii) at least d− 1 have a non-Gaussian distribution.

These examples motivate our study that aims to relax the identification
conditions such that we can identify A for more kinds of distributions for ε.
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3. Cumulants and basic tensor notation

The cumulants of a vector X = (X1, . . . , Xd) are obtained from the cu-

mulant generating function KX(t) = logEet′X , for t ∈ Rd, exactly in the
same way as the moments are obtained from the moment generating func-
tion MX(t) = Eet′X . We write κr(X) to denote the r-order d × · · · × d
tensor, that is an r-dimensional table whose (i1, . . . , ir)-th entry is

κr(X)i1···ir = cum(Xi1 , . . . , Xir) =
∂r

∂ti1 · · · ∂tir
KX(t)

∣∣∣
t=0

.

We have κ1(X) = EX, κ2(X) = var(X) and κ3(X) is a d × d × d tensor
filled with the third order central moments of X. The relationship between
the higher order κr(X) and the moments is more cumbersome but very well
understood Speed [1983], McCullagh [2018]; see Appendix A.1. Directly
by construction, κr(X) is a symmetric tensor, i.e. it is invariant under an
arbitrary permutation of the indices. The space of real symmetric d×· · ·×d
order r tensors is denoted by Sr(Rd) and so κr(X) ∈ Sr(Rd). Writing
[d] = {1, . . . , d}, the set of indices of an order r tensor is [d]r. However,

Sr(Rd) ⊂ Rd×···×d has dimension
(
d+r−1

r

)
and the unique entries are Ti1···ir

for 1 ≤ i1 ≤ . . . ≤ ir ≤ d.
The following well-known characterization of independence is of impor-

tance in our work.

Proposition 3.1. The components of X are independent if and only if
κr(X) is a diagonal tensor for every r ≥ 2.

This result highlights that the necessity of the independence assump-
tion in ICA can be investigated by studying the consequences of making
appropriate tensors elements non-zero. The relationship to the Gaussian
distribution can be understood from a version of the Marcinkiewicz classical
result Marcinkiewicz [1939], Lukacs [1958].

Proposition 3.2. If X ∼ Nd(µ,Σ) then κ1(X) = µ, κ2(X) = Σ, and
κr(X) = 0 for r ≥ 3. Moreover, the Gaussian distribution is the only proba-
bility distribution such that there exists r0 with the property that κr(X) = 0
for all r ≥ r0.

The main advantage of using cumulants as opposed to moments for iden-
tification in the ICA model comes from semi-invariance in connection with
multilinearity and tensors; see, for example, Section 2.3 in Zwiernik [2016].
Specifically, semi-invariance implies that if r ≥ 2 then

κr(X + c) = κr(X) for every c ∈ Rd .

Moreover, multilinearity of cumulants implies that for every A ∈ Rd×d

κr(AX) = A • κr(X) ,
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where A • T for T ∈ Sr(Rd) denotes the standard multilinear action

(A • T )i1···ir =
d∑

j1=1

· · ·
d∑

jr=1

Ai1j1 · · ·AirjrTj1···jr

for all (i1, . . . , ir) ∈ [d]r. Since A•T ∈ Sr(Rd) for all T ∈ Sr(Rd) we say that
A ∈ Rd×d acts on Sr(Rd). The notation A • T is a special case of a general
notation for multilinear transformations Rn1×···×nr → Rm1×···×mr given by
matrices A ∈ Rm1×n1 , . . . , Z ∈ Rmr×nr :

(2) [(A, . . . , Z) · T ]i1···ir =

n1∑
j1=1

· · ·
nr∑

jr=1

Ai1j1 · · ·ZirjrTj1···jr .

See, for example Lim [2021] for an overview of the computational aspects of
tensors.

4. Identification with zero constraints

Since AY = ε with Eε = 0 and var(ε) = Id, the second order cumulant of
Y , i.e. the variance of Y , satisfies var(Y ) = (A′A)−1 and so it is enough to
narrow down potential candidates for A to the compact set

Ω = {QA : Q ∈ O(d)} .

Suppose that we also have some additional information about a fixed higher-
order tensor T = cumr(ε) ∈ Sr(Rd), for example we know that T ∈ V for
some subset V ⊆ Sr(Rd). By multilinearity we have

(3) κr(AY ) = A • κr(Y ) = T ,

and for any given Q ∈ O(d), QA ∈ Ω remains a valid candidate if

(4) (QA) • κr(Y ) ∈ V .

However,

(QA) • κr(Y ) = Q • (A • κr(Y )) = Q • T
and so (3) and (4) hold together if and only if Q • T ∈ V. For T ∈ V, we
define

(5) GT (V) := {Q ∈ O(d) : Q • T ∈ V} ,

which is the subset of Ω that can be identified from V. Below we sometimes
drop V, writing GT , if the context is clear. We always have Id ∈ GT (V) but
in general GT (V) will be larger.

We summarize the general identification problem as follows.

Proposition 4.1. Consider the model (1) with Eε = 0 and var(ε) = Id.
Suppose we know, for a fixed r ≥ 3, that T = cumr(ε) ∈ V ⊂ Sr(Rd). Then
A can be identified up to the set

{QA : Q ∈ GT (V)}.
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In the ideal situation GT (V) is a singleton, in which case A can be re-
covered exactly. But we also expect that, in general, exact recovery will
not be possible. We are therefore looking for restrictions V that assure that
GT (V) is a finite set, possibly with some additional structure. The leading
structure of interest is the set of signed permutations for which we recover
the original ICA result under strictly weaker assumptions.

Clearly, these exists a plethora of restrictions on the higher order cumu-
lants T = cumr(ε) that can be considered. For instance, the ICA assumption
imposes that cumr(ε) has zero off-diagonal elements for all r (i.e. Propo-
sition 3.1). We will relax this assumption in two ways. First, from the
definition of V it follows that we will consider only restrictions on a sin-
gle tensor T and second we will explore which off-diagonal elements can be
made non-zero. In other words, within the class of zero restrictions we look
for minimal restrictions.

We formalize zero cumulant restrictions by choosing a subset I of r-
tuples (i1, . . . , ir) satisfying 1 ≤ i1 ≤ · · · ≤ ir ≤ d and by defining the vector
space V = V(I) of symmetric tensors T ∈ Sr(Rd) such that Ti = 0 for all
i = (i1, . . . , ir) ∈ I. In symbols:

V = V(I) = {T ∈ Sr(Rd) : Ti = 0 for i ∈ I} .

Note that the codimension of V in Sr(Rd) is precisely codim(V) = |I|.

Example 4.2. Suppose that V ⊂ S3(R2) is given by T112 = T122 = 0. This
is a two-dimensional subspace parametrized by T111 and T222. The condition
Q • T ∈ V is given by the system of two cubic equations in the entries of Q

Q2
11Q21T111 +Q2

12Q22T222 = 0

Q11Q
2
21T111 +Q12Q

2
22T222 = 0.

In a matrix form this can be written as

Q ·
[
Q11 0
0 Q22

]
·
[
Q21 0
0 Q12

]
·
[
T111

T222

]
=

[
0
0

]
.

Since Q is orthogonal, each of the two diagonal matrices above is either
identically zero or it is invertible. If it is identically zero then Q must
be a sign permutation matrix and the equation clearly holds. If they are
both invertible we immediately see that the equation cannot hold unless
T111 = T222 = 0, in which case T is the zero tensor showing that for every
nonzero T ∈ V we have that GT (V) = SP(2).

The example clarifies our notation and illustrates how higher order cu-
mulant restrictions can be used for identification. Unfortunately, the direct
arguments that we used to determine GT (V) do not generalize for higher r
and d. Handling such cases requires a more systematic approach which we
develop in Section 5.
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4.1. Deriving zero cumulant restrictions. Besides the fact that zero cu-
mulant restrictions follow naturally from the canonical ICA literature, there
are additional ways in which such restrictions can be motivated. Specifically,
we briefly illustrate how alternative relaxations of independence, which are
arguably common in social sciences, can be equivalently be expressed as zero
cumulant restrictions that are strictly weaker than considered in the ICA
literature.

Mean independence. We say thatXi is mean independent ofXj if E(Xi|Xj) =
E(Xi). Mean independence is strictly stronger than uncorrelatedness yet
strictly weaker than independence. The relationship to zero cumulants can
be formalized as follows.

Proposition 4.3. If Xi is mean independent of Xj then [κr(X)]ij···j = 0
for every r ≥ 2.

Proof. By semi-invariance of cumulants of order r ≥ 2, we can assume that
EXi = 0. For every l ∈ N we have

E(XiX
l
j) = E(X l

jE(Xi|Xj)) = E(Xi)E(X l
j) = 0.

We can now use the formula (20) for cumulants in terms of moments, which
we give in the appendix, to conclude the proof. □

There is an obvious generalization of this result that admits essentially
the same proof.

Proposition 4.4. If Xi is mean independent of a subvector XB of X then
[κr(X)]ij2···jr = 0 for every r and any collection j2, . . . , jr of elements in B.

These results can be used directly to formulate zero cumulant restrictions
for model (1) when, for instance, εi is known to be mean independent of
some subvector εB.

Remark 4.5. Note that Xi is mean independent of XB if and only if

cov(Xi, f(XB)) = 0

for any function f : R|B| → R for which this covariance exists. As a further
relaxation of mean independence we could require that cov(Xi, f(XB)) = 0
only for all polynomials f in xB of order at most r − 1. Using the same
proof as in Proposition 4.3, we conclude that [κr(X)]ij···j = 0 (and similar
restrictions may not hold for higher orders). For example, if r = 3 and
Eε = 0 and var(ε) = Id, we can assume Eεiε2j = 0. Such co-skewness
moments, and thus the corresponding cumulants, have been argued to be
zero for macroeconomic models where the errors are interpretable as demand
and supply errors [e.g. Bekaert et al., 2021].
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Invariance. Another natural way how zero cumulant restrictions appear is
through invariance properties on the underlying distribution. Suppose that
the distribution ofX is the same as the distribution ofDX for every diagonal
matrix D with Dii = ±1 for all i = 1, . . . , d. In this case, by multilinearity
of cumulants,

[κr(DX)]i1···ir = Di1i1 · · ·Dirir [κr(X)]i1···ir .

Since D is arbitrary, [κr(X)]i1···ir must be zero unless all indices appear even
number of times. In particular, if r must be even and for example, if r = 4,
the only potentially non-zero cumulants are κiiii and κiijj . We treat this
zero pattern more in detail in Section 5.2 and we show how it appears in
spherical distributions.

5. Identification up to Sign and Permutation

In this section we discuss specific sets of zero restrictions that allow to
identify A up to sign and permutation.

5.1. Diagonal tensors. Denote by T = cumr(ε) the rth order cumulant
tensor of ε. A simple assumption that facilitates identification is that T is
a diagonal tensor.

Definition 5.1. A tensor T ∈ Sr(Rd) is called diagonal if it has entries
Ti = 0 unless i = (i, . . . , i) for some i = 1, . . . , d.

Of course, if the components of ε are independent then T is diagonal
for all r ≥ 2 (see Proposition 3.1), which makes this assumption natural.
Assuming that T is diagonal is much less restrictive than full independence
as any T can be chosen without imposing restrictions on other cumulants.
This allows for instance to assume that only the cross-third moments of ε
are zero, without imposing any restrictions on the higher order moments.

In this section V denotes the set of diagonal tensors in Sr(Rd). For veri-
fying whether V provides sufficient identifying restrictions we will study the
tensors T and Q•T via their associated homogeneous polynomials. We have

(6) fT (x) =
∑
i

Tixi1 . . . xir = ⟨T, x⊗r⟩,

where x⊗r ∈ Sr(Rd) satisfies (x⊗r)i1···ir = xi1 · · ·xir . If r = 2 then T
is a symmetric matrix and fT (x) = x′Tx is the standard quadratic form
associated with T .

Lemma 5.2. If T ∈ Sr(Rd) and A ∈ Rd×d then fA•T (x) = fT (A
′x). More-

over, ∇fA•T = Q∇fT (A
′x) and ∇2fA•T = Q∇2fT (A

′x)Q′.

Proof. The first claim follows because

fA•T (x) = ⟨A • T, x⊗r⟩ = ⟨T, (A′x)⊗r⟩ = fT (A
′x).

The second claim is a direct check. □
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Lemma 5.2 shows that we can study the tensor Q • T via the associated
polynomial of T as fQ•T = fT (Q

′x). This will be useful for deriving our first
main result.

Theorem 5.3. Let T ∈ Sr(Rd) for r ≥ 3 be a diagonal tensor with at most
one zero entry on the diagonal. Then Q • T ∈ V if and only if Q ∈ SP(d),
i.e. GT (V) = SP (d).

Proof. The left direction is clear. For the right direction, note that the
tensor T is diagonal if and only if ∇2fT (x) is diagonal polynomial matrix.
By Lemma 5.2, we have fQ•T (x) = fT (Q

′x) and

∇2fQ•T (x) = Q∇2fT (Q
′x)Q′.

Thus, Q • T is diagonal if and only if Q∇2fT (Q
′x)Q′ = D(x) for a diagonal

matrix D(x). Equivalently, for every i, j

Qij
∂2

∂x2j
fT (Q

′x) = Dii(x)Qij .

If each row of Q has exactly one non-zero entry then Q ∈ SP(d) and we are
done. So suppose Qij , Qik ̸= 0. Then, by the above equation

∂2

∂x2j
fT (Q

′x) = Dii(x) =
∂2

∂x2k
fT (Q

′x).

Equivalently, ∂2

∂x2
j
fT (x) =

∂2

∂x2
k
fT (x), which simply states that

Tj···jx
r−2
j = Tk···kx

r−2
k .

Since r ≥ 3, this equality can hold only if Tj···j = Tk···k = 0, which is
impossible by our genericity assumption. □

Remark 5.4. The genericity condition is not only sufficient but also neces-

sary. Indeed, if, for example T1···1 = T2···2 = 0 then ∂
∂x2

1
fT (x) =

∂2

∂x2
2
fT (x) =

0. Thus, ∇2fQ•T (x) is diagonal for any block matrix of the form

Q =

[
Q0 0
0 Id−2

]
where Q0 ∈ O(2) is an orthogonal matrix. The family of such matrices is
infinite.

Combining Proposition 4.1 and Theorem 5.3 implies the following result.

Theorem 5.5. Consider the model (1) with Eε = 0, var(ε) = Id and suppose
that for some r ≥ 3 the tensor cumr(ε) is diagonal with at most one zero on
the diagonal. Then A in (1) is identifiable up to permuting and swapping
signs of its rows.
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5.2. Reflectionally invariant tensors. In some applications the assump-
tion that T is diagonal may be unattractive. A leading example is found in
economics and finance where errors often display excess kurtosis, but at the
same time the variance of the errors has clear common component, e.g. the
variance underlying stock market returns co-moves across different assets.
This implies that exploiting 4th order cumulants may provide identifying in-
formation, but entries of the form Tiijj cannot be restricted to zero (or some
other constant) due to the common volatility structure [e.g. Montiel Olea
et al., 2022].

More generally, suppose that the distribution of ε is symmetric in the
sense that its distribution will not change if we switch signs of some of
its components. In this case, as we showed in Section 4, the odd-order
cumulants must be necessarily zero so, although they are diagonal, they
do not satisfy the genericity conditions in Theorem 5.5. Hence we only
consider even order tensors, which are generically not diagonal in this class
of distributions.

These observations motivate the following cumulant restrictions.

Definition 5.6. A tensor T ∈ Sr(Rd) is called reflectionally invariant if
the only potentially non-zero entries in T are the entries Ti1···ir where each
index appears in the sequence (i1, . . . , ir) even number of times. If r is odd,
the only reflectionally invariant tensor is the zero tensor.

Recall from (6) that any T ∈ Sr(Rd) has an associated homogeneous
polynomial fT (x) of order r in x = (x1, . . . , xd). It is clear from the definition
that a non-zero T ∈ Sr(Rd) is reflectionally invariant if and only if r is even
and there is a homogeneous polynomial gT of order l := r/2 such that
fT (x) = gT (x

2
1, . . . , x

2
d). The polynomial gT is a polynomial associated to

the tensor S ∈ Sl(Rd) defined by Si1···il = Ti1i1···ilil . We have the following
useful characterization of reflectionally invariant tensors.

Lemma 5.7. The tensor T ∈ Sr(Rd) is reflectionally invariant if and only
if fT (x) = fT (Dx) for every diagonal matrix with ±1 on the diagonal.

Proof. By Lemma 5.2, fT (x) = fT (Dx) is equivalent to saying that D •T =
T for every diagonal D ∈ Zd

2. If T is reflectionally invariant then

fT (Dx) = gT (D
2
11x

2
1, . . . , Dddx

2
d) = fT (x),

which establishes the right implication. For the left implication note that
fT (x) = fT (Dx) implies that fT does not depend on the signs of the compo-
nents of x. Since this is a polynomial, we must be able to write it in the form
gT (x

2
1, . . . , x

2
d). This is equivalent with T being reflectionally invariant. □

Remark 5.8. If ε has an elliptical distribution with Σ = Id (spherical dis-
tribution) then ε has the same distribution as Qε for every Q ∈ O(d). In
particular, each cumulant tensor κr(ε) is reflectionally invariant.
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In the theorem below, for a tensor T ∈ Sr(Rd) we use the notation

T+···+ij :=
d∑

i1=1

· · ·
d∑

ir−2=1

Ti1···ir−2ij .

Theorem 5.9. Suppose that T ∈ Sr(Rd) for an even r is a reflectionally
invariant tensor satisfying

(7) T+···+ii ̸= T+···+jj for all i ̸= j.

Then Q•T is reflectionally invariant for Q ∈ O(d) if and only if Q ∈ SP(d),
i.e. GT (V) = SP (d).

Remark 5.10. We emphasize that the genericity condition in (7) simply

states that T lies outside of
(
d
2

)
explicit linear hyperplanes in Sr(Rd). None

of these hyperplanes contains the linear space of reflectionally invariant ten-
sors and so the underlying measure of reflectionally invariant tensors not
satisfying (7) is zero.

Theorem 5.9 is proven using the following lemma.

Lemma 5.11. Let r be even and suppose that T ∈ Sr(Rd) is reflectionally
invariant tensor satisfying (7). Then Q • T = T for Q ∈ O(d) if and only if
Q is a diagonal matrix.

Proof. The left implication is clear because fT (x) = fT (Dx) = fD•T (x) by
Lemma 5.7. We prove the right implication by induction. The base case
is r = 2, where the set of reflectionally invariant tensors corresponds to
diagonal matrices. In this case the equation Q • T = T becomes QTQ′ = T
or, equivalently, QT = TQ. This implies that for each 1 ≤ i ≤ j ≤ d

QijTjj = TiiQij .

By the genericity condition (7), all the diagonal entries of the matrix T
are distinct. In this case, for every i ̸= j, we necessarily have Qij = 0.
Proving that Q must be diagonal. Note also that this genericity condition is
necessary: If two diagonal entries of T are equal, then the entries of the 2×2
submatrix Qij,ij are not constrained, so Q does not have to be diagonal.

Suppose now that the claim is true for r ≥ 2 and let T ∈ Sr+2(Rd) with
Q • T = T . Rewrite Q • T = T using the general multilinear notation (2) as

(8) (Q, . . . , Q, Id, Id) · T = (Id, . . . , Id, Q
′, Q′) · T.

We want to show that this equality implies that Q is a diagonal matrix. Let
i = (i1, . . . , ir) and consider all (r+2)-tuples (i, u, u) for some u ∈ {1, . . . , d}.
Writing (8) restricted to these indices gives∑

j1,...,jr

Qi1jj · · ·QirjrTj1···jruu =
∑

jr+1,jr+2

Qjr+1uQjr+2uTi1···irjr+1jr+2 .
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Now sum both sides over all u = 1, . . . , d. Using the fact that Q is orthogonal
we get that

∑
uQjr+1uQjr+2u is zero if jr+1 ̸= jr+2 and it is 1 if jr+1 = jr+2.

Denoting Si =
∑

u Tiuu, summation over u yields∑
j1,...,jr

Qi1jj · · ·QirjrSj1···jr =
∑
v

Ti1···irvv = Si1···ir .

Since this equation holds for every i = (i1, . . . , ir), we conclude Q • S = S,
where S = (Si) ∈ Sr(Rd). Note however that S is a reflectionally invariant
tensor. Indeed, if some index appears in i odd number of times then Si =
Tiuu = 0 as the same index appears in (i, u, u) odd number of times. Since
T satisfies (7), S satisfies (7) too. Indeed,∑

k1

· · ·
∑
kl−1

Sk1k1···kl−1kl−1ii =
∑
k1

· · ·
∑
kl−1

∑
kl

Tk1k1···kl−1kl−1klklii

and so these quantities are distinct for all i = 1, . . . , d by assumption on T .
Now, by the induction assumption, we conclude that Q is diagonal. □

Proof of Theorem 5.9. The left implication is clear. For the right implica-
tion, suppose Q ∈ O(d) is such that Q • T is reflectionally invariant. By
Lemma 5.7, equivalently, fQ•T (x) = fQ•T (Dx) for every diagonal D ∈ O(d),
which gives fT (Q

′x) = fT (Q
′Dx). This polynomial equation implies that

fT (x) = fT (Q
′DQx)

but since Q′DQ ∈ O(d), Lemma 5.11 implies that D̄ = Q′DQ must be
diagonal. Therefore, the equation DQ = QD̄ shows that switching the signs
in the i-th row of Q is equivalent to switching some columns of Q. Suppose
that there are at least two non-zero entries Qik, Qil in the i-th row of Q
and let D be such that Dii = −1 and Djj = 1 for j ̸= i. The equality
DQ = QD̄ requires that D̄kk = D̄ll = −1 and that Q has no other non-zero
entries in k-th and l-th columns. Since these columns are orthogonal we get
a contradiction. We conclude that the i-th row of Q must contain at most
(and so exactly) one non-zero entry. Applying this to each i = 1, . . . , d, we
conclude that Q ∈ SP(d). □

Combining Proposition 4.1 and Theorem 5.9 implies the following result.

Theorem 5.12. Consider the model (1) with Eε = 0, cov(ε) = Id and
suppose that for some even r the cumulant tensor cumr(ε) is reflectionally
invariant and it satisfies the genericity condition (7). Then A is identifiable
up to permuting and swapping signs of its rows.

5.3. Generalizations. Theorems 5.5 and 5.12 highlight key zero cumulant
patterns that can be used to identify A up to sign and permutation for model
(1). Obviously, such restrictions are equally sufficient for identification in
the class of linear simultaneous equations models AY = BX + ε when X is
exogenous, and various dynamic extensions of such models [e.g. Kilian and
Lütkepohl, 2017].
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That said it is also of interest to explore whether relaxing additional zero
restrictions still leads to identification (up to sign and permutation), and

which genericity conditions are required. Since dim(O(d)) =
(
d
2

)
, we need at

least that many constraints to assure GT is finite. However, as we show in
Section 6, this may still not be enough to assure that GT = SP(d). Motivated
by Proposition 4.3, we consider a special model with

I = {(i, j, . . . , j) : 1 ≤ i < j ≤ d} ∪ {(i, . . . , i, j) : 1 ≤ i < j ≤ d}.

Conjecture 5.13. If T is a generic tensor in V(I) then Q•T ∈ V(I) if and
only if Q ∈ SP(d).

Remark 5.14. If r = 3 then V(I) is the space of diagonal tensors. If r = 4
then V(I) is the space of reflectionally invariant tensors. Thus, the conjec-
ture holds if r = 3, 4.

The case when d = 2 is very special because O(2) has dimension 1. In this
case the analysis of zero patterns can be often done using classical algebraic
geometry. In particular, we can show that the conjecture holds for Sr(R2)
tensors for any r.

Proposition 5.15. Suppose that T ∈ Sr(R2) satisfies T12···2 = T1···12 = 0
but is otherwise generic. Then Q • T ∈ V(I) if and only if Q ∈ SP(2).

We prove this result in Appendix B.3. The genericity conditions are again
linear and can be recovered from the proof.

Although we have not proven Conjecture 5.13 and the case d = 2 is less in-
teresting for statistical practice, the cases r = 3, 4 mentioned in Remark 5.14
can be often sufficient if the goal is to recover A with, for instance, a mean
independence assumption on ε.

6. Local identification

The results in the previous section stipulate conditions on T = cumr(ε) for
which A can be recovered up to sign and permutation. In general however,
such identification results may be hard to obtain and, as we illustrate below,
for many zero patterns a generic GT will be finite but much more complicated
than the set of sign permutations.

This section gives the minimal conditions on V that ensure that GT is
finite. We subsequently use this result to highlight the gap that exists be-
tween restrictions that lead to finite sets and restrictions that lead to signed
permutation sets. In addition, we note that for some applications it may
not be necessary to recover A up to sign and permutation only, but rather
knowing that GT is finite suffices as it ensures that, for instance, a given
estimation method converges.

Let V ⊂ Sr(Rd) be a set given by polynomial constraints. A subset
U ⊆ V is Zariski open in V if the complement V \ U is given by some
additional polynomial constraints. In particular, a Zariski open set is also
open in the classical topology. For example, the set of diagonal tensors in
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Sr(Rd) with at most one zero on the diagonal forms a Zariski open subset
of the set of diagonal tensors. Similarly, the set of reflectionally invariant
tensors satisfying the genericity condition (7) is Zariski open in the set of
reflectionally invariant tensors. Note that, in both cases, the constraints
defining V and V \ U were linear.

Definition 6.1. The problem of recovering A in (1) is locally identifiable
under cumulant constraints U ⊆ V ⊂ Sr(Rd) with U open in V if every point
of GT (U) is an isolated point of GT (U).

The following result establishes link between local identification and finite-
ness of GT .

Proposition 6.2. Let U be a Zariski open subset of V. For T ∈ U we have
|GT (U)| < ∞ if and only if each point of GT (U) is an isolated point of GT (U).
Proof. The right implication is clear. For the left implication first note that
GT (U) is a Zariski open subset of the real algebraic variety GT (V). Indeed,
if f1(T ) = · · · = fk(T ) = 0 are the polynomials describing V then the
polynomials describing GT (V) within O(d) are f1(Q•T ) = · · · = fk(Q•T ) =
0. Similarly, if V \U is described within V by g1(T ) = · · · = gl(T ) = 0. Then
GT (V) \ GT (U) is described by g1(Q • T ) = · · · = gl(Q • T ) = 0.

Since GT (V) is a real algebraic variety, the set of its isolated points is
equal to its zero-dimensional components and so it must be finite; see for
example Theorem 4.6.2 in Cox et al. [2013]. It is then enough to show that
if Q is isolated in GT (U) then it must be isolated in GT (V). Suppose that
Q ∈ GT (U) is not isolated in GT (V). Then it must lie on an irreducible
component of the variety GT (V) of a positive dimension. By assumption,
for this Q, g1(Q • T ) ̸= 0, . . . , gl(Q • T ) ̸= 0. Thus, in any sufficiently small
neighbourhood of Q there will be a point that lies in GT (V) and g1, . . . , gl
evaluate to something non-zero. In other words, in any sufficiently small
neighbourhood of Q there is a point in GT (U) proving that Q cannot be
isolated in GT (U), which leads to contradiction. □

Remark 6.3. The proof of Proposition 6.2 also shows that if U is a Zariski
open subset of V then GT (U) is a Zariski open subset of GT (V). Moreover,
Q ∈ GT (U) is isolated if and only if it is isolated in GT (V).
Lemma 6.4. For a fixed T ∈ Sr(Rd), consider the map from Rd×d to Sr(Rd)
given by A 7→ A•T . Its derivative at A is a linear mapping on Rd×d defined
by

(9) KT,A(V ) = (V,A, . . . , A) • T + · · ·+ (A, . . . , A, V ) • T.
Moreover, if A is invertible, then

(10) KT,A(V ) = KA•T,Id(V A−1).

Proof. For any direction V ∈ Rd×d, we have

(A+ tV ) • T − A • T
= t(V,A, . . . , A) • T + · · ·+ t(A, . . . , A, V ) • T + o(t).
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So the proof of the first claim follows by the definition of a derivative. The
second claim follows by direct calculation. □

For a given linear subspace V ⊆ Sr(Rd), let πV : Sr(Rd) → V⊥ denote the
orthogonal projection on V⊥. Of course, T ∈ V if and only if πV(T ) = 0.
Moreover, if V = V(I) is given by zero constraints, then πV(T ) simply gives
the coordinates Ti for i ∈ I.

In the next result, KId,A(V ) = (V,A) • Id + (A, V ) • Id, which is a special
instance of (9).

Lemma 6.5. Let U be a Zariski open subset of V. A point Q is an isolated
point of GT (U) if and only if

(11) KId,Q(V ) = πV(KT,Q(V )) = 0 implies V = 0.

Proof. Since,

(Q+ tV )(Q+ tV )′ = Id + t(V Q′ +QV ′) + o(t),

V is a direction in the tangent space to O(d) at Q if and only if V Q′+QV ′ =
0. Equivalently,

V Q′ +QV ′ = (V,Q) • Id + (Q,V ) • Id = KId,Q(V ) = 0.

Thus, the first condition KId,Q(V ) = 0 simply restates that V lies in the
tangent space of O(d) at Q.

The proof of Proposition 6.2 showed that, U ⊆ V is Zariski open, then
GT (U) is Zariski open (and so also open in the classical topology) in GT (U).
Thus, if Q is not isolated, every neighborhood of Q must contain an element
in GT (U) different than Q. In other words, the point Q ∈ GT (U) is not
isolated if and only if there exists a tangent direction V ̸= 0 such that

πV((Q+ tV ) • T )− πV(Q • T ) = πV((Q+ tV ) • T ) = o(t).

Taking the limit t → 0, we get that equivalently πV(KT,Q(V )) = 0. This
shows that Q is isolated if and only if no such non-trivial tangent direction
exists. □

Remark 6.6. In the examples of Section 5, for T ∈ U ⊆ V, we always had
GT (U) = GT (V) = SP(d). The proof of Proposition 6.2 suggests that, at
least in principle GT (U) could be finite but GT (V) could have components
of positive dimension. In the proof of the next result, we crucially rely on
the fact that we compute GT (U) rather than GT (V).

The main result of this section studies local identifiability with a model
defined by the minimal number of

(
d
2

)
constraints with

I = {(i, j, . . . , j) : 1 ≤ i < j ≤ d}.

We write V◦ = V(I). Denote

(12) B
(j)
kl = [Tklj···j ]k,l<j ∈ S2(Rj−1)
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and define U◦ ⊂ Sr(Rd) as the set of tensors T ∈ V◦ such that,

(13) det
(
Tj···jIj−1 − (r − 1)B(j)

)
̸= 0 for all j = 2, . . . , d.

Theorem 6.7. If T ∈ U◦ then |GT (U◦)| < ∞.

Proof. By Proposition 6.2 it is enough to show that each point of GT (U◦) is
isolated. By Lemma 6.5, equivalently for every Q ∈ GT (U◦), if KId,Q(V ) = 0
and πV(KT,Q(V )) = 0 then V = 0. By (10), KId,Q(V ) = KId,Id(V Q′).
Thus, denoting U = V Q′, this condition is equivalent to saying that U an-
tisymmetric (U + U ′ = 0). We will show that the conditions above imply
that U must be zero. By assumption, we have Uii = 0 and Uij = −Uji

for all i ̸= j. Again using (10), we get πV(KT,Q(V )) = πV(KQ•T,Id(U)).
Denote S := Q • T . Since Q ∈ GT (U◦), in particular, S ∈ U◦. The con-
dition πV(KS,Id(U)) = 0 means that for every i = (i, j, . . . , j) with i < j,
(KS,Id(U))ij···j = 0. More explicitly,

0 =
d∑

l=1

UilSlj···j +
d∑

l=1

UjlSilj···j + · · ·+
d∑

l=1

UjlSij···jl

= UijSj···j + (r − 1)
d∑

l=1

UjlSilj···j

= −UjiSj···j + (r − 1)
d∑

l=1

UjlSilj···j

Let uj = (Uj 1, . . . , Uj j−1) for j = 2, . . . , d. Let first j = d. Using the matrix

B(d) defined in (12) the equation above gives(
Sd···dId−1 − (r − 1)B(d)

)
ud = 0.

This has a unique solution ud = 0 if and only if det(Sd···dId−1−(r−1)B(d)) ̸=
0, which holds by (13). We have shown that the last row of U is zero. Now
suppose that we have established that the rows j+1, . . . , d of U are zero. If
j = 1, we are done by the fact that U is antisymmetric. So assume j ≥ 2.
We will use the fact that Ujl = 0 if l ≥ j. For every i < j

0 = −UjiSj···j + (r − 1)
∑
l ̸=j

UjlB
(j)
il = −UjiSj···j + (r − 1)

∑
l<j

B
(j)
il Ulj .

This again has a unique solution if and only if det(Sj···jIj−1−(r−1)B(j)) ̸= 0,
which holds by (13). Using a recursive argument, we conclude that U =
0. □

Example 6.8. Consider V◦ ⊆ S3(R2) given by T122 = 0. Direct calculations
show that, for any given generic T , there are 12 orthogonal matrices such
that Q • T ∈ V. There are four elements given by the diagonal matrices
together with 8 additional elements that depend on T . So, for example, if
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T111 = 1, T222 = 2, and T112 = 3 then the twelve elements are the four
matrices D and eight matrices of the form

1

5
D

[
3 4
4 −3

]
and

1√
2
D

[
1 1
1 −1

]
.

Going back to our original motivation, suppose ε is a two-dimensional mean-
zero random vector with var(ε) = I2. If we impose in addition that Eε1ε22 =
0, then, even if we impose some genericity conditions, the matrix A in (1)
is identified only up to the set of 12 elements. Moreover, as illustrated
above, these elements may look nothing like A in the sense that they are
not obtained by simple row permutation and sign swapping.

Remark 6.9. The set GT (U◦) is finite but, as illustrated by Example 6.8,
it typically contains matrices that do not have an easy interpretation. In
particular, if d = 2 then V◦ is given by a single constraint T12···2 = 0. In
this case we can show that there are generically 4r complex solutions (which
generalized the number 12 in the above example). There are 4 solutions
given by the elements of Z2

2 and 4(r− 1) extra solutions, which do not have
any particular structure.

7. Inference for non-independent components models

Given our new identification results, there exist numerous possible routes
for estimating A in AY = ε given a sample {Ys}ns=1. A natural approach is
based on the following two basic observations:
Observation 1: Suppose Eε = 0, κ2(ε) = Id, κr(ε) ∈ V, and V is enough to
identify A0 in (1) up to sign permutations (as discussed in Section 5). Then
A = QA0 for Q ∈ SP(d) if and only if A • κ2(Y ) = Id and A • κr(Y ) ∈ V.
Observation 2: The last statement remains approximately true if we re-
place the cumulants κ with consistent estimators. We can then estimate A
by choosing it such that the distance between (A • κ2(Y ), A • κr(Y )) and
(Id,V) is minimized.

Such minimum distance estimators are commonly adopted in the ICA
literature using (a) Euclidean distance to measure distance and (b) diagonal
tensor restrictions [e.g. Hyvärinen et al., 2001, Chapter 11]. For instance,
the JADE algorithm of Cardoso and Souloumiac [1993] solves a minimum
distance problem that considers (after pre-whitening) cumulant restrictions
on κ4. In our approach we (a) measure the distance to V in a statistically
meaningful way in order to get optimal efficiency of the associated estimator
and (b) consider also non-diagonal tensor restrictions. We note that the
minimum distance approach is most natural given our identification results,
but other existing ICA methods could equally well be modified.

We formalize these ideas as follows. Let A0 denote the true A. For any
symmetric matrix S ∈ S2(Rd) and a symmetric tensor T ∈ Sr(Rd) define
mS,T : Rd×d → S2(Rd)⊕ Sr(Rd) to be

(14) mS,T (A) = (A • S − Id, A • T ) .
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The two cases that we consider are S = κ2(Y ), T = κr(Y ), in which case we
write simplym(A), and S = k2, T = kr, in which case we write m̂n(A). Here,
kr denotes the rth order k-statistic as computed from the sample {Ys}ns=1;
see e.g. McCullagh [2018, Chapter 4]. In Appendix A.3 we provide explicit
formulas for computing kr, and in Appendix A.6 we provide asymptotic
results for k statistics. It is worth pointing out that these results generalize
existing results [e.g. Jammalamadaka et al., 2021] for the asymptotic analysis
of cumulant estimates to higher order tensors.

Remark 7.1. The inclusion of the first term A • κ2(Y ) − Id in m(A) is not
necessary when the data are pre-whitened, but we will not assume this.
Also, if Eε ̸= 0 we may include κ1(AY ) in m(A).

Now fix V = V(I) and recall that πV was defined as the orthogonal
projection from Sr(Rd) to V⊥. For a fixed V = V(I) we also define

(15) gS,T (A) := vec(A • S − Id, πV(A • T )) ∈ R(
d+1
2 )+|I|,

where vec is the vectorization that takes the unique entries of an element in
S2(Rd)⊕V⊥ and stacks them as a vector. We have gS,T (A) = 0 if and only
if A • S = Id and A • T ∈ V. Let

dg =

(
d+ 1

2

)
+ |I|

denote the dimension of S2(Rd)⊕ V⊥. Under any set of identifying restric-

tions |I| ≥
(
d
2

)
and so we have dg ≥ d2. As in the case of mS,T (A) we write

g(A) if S = κ2(Y ) and T = κr(Y ), and ĝn(A) if S = k2, T = kr.
The population and sample objective functions that we consider are given

by

(16) LW (A) = ∥g(A)∥2W and L̂W (A) = ∥ĝn(A)∥2W ,

where W is an dg × dg positive definite weighting matrix, ∥v∥2W = v′Wv.
The following result is clear.

Lemma 7.2. Suppose that (1) holds with κ2(ε) = Id and κr(ε) ∈ V. If
GT (V) = SP(d) then LW (A) = 0 if and only if A = QA0 for Q ∈ SP(d).

Proof. We have LW (A) = 0 if and only if g(A) = 0, which is equivalent
A•κ2(Y ) = Id and A•κr(Y ) ∈ V. Since (1) holds, we also have A0•κ2(Y ) =
I2 and A0 • κr(Y ) ∈ V. It follows that A−1

0 A ∈ O(d), or in other words,
A = QA0 for some Q ∈ O(d). Further,

A • κr(Y ) = QA0 • κr(Y ) = Q • κr(ε) ∈ V,
which implies that Q ∈ GT (V) = SP(d). □

Given a sample {Ys}ns=1, and a sequence of positive semidefinite matrices
Wn we define the estimator

(17) ÂWn := arg min
A∈A

L̂Wn(A),
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where A ⊆ GL(d) is fixed in advance and Wn is a weighting matrix that may
depend on the sample. Here by argminA∈A we mean an arbitrarly chosen
element from the set of minimizers of L̂Wn(A).

We will refer to the class of estimators (17) as generalized cumulant es-
timators, for its similarity to the class of generalized moment estimators
developed in Hansen [1982].

7.1. Consistency of generalized cumulant estimators. We can show
that this class gives consistent estimates for the true A0 up to sign and
permutation. A possible set of conditions is as follows.

Proposition 7.3 (Consistency). Suppose that {Ys}ns=1 is i.i.d and (i) g(A) =
0 if and only if A = QA0 for Q ∈ SP(d), (ii) A ⊂ GL(d) is compact and

QA0 ∈ A for some Q ∈ SP (d) (iii) Wn
p→ W and W is positive definite,

(iv) E∥Ys∥r < ∞. Then ÂWn

p→ QA0 as n → ∞ for some Q ∈ SP(d).

The proofs of this section are deferred to Appendix C. We note that
being able to satisfy condition (i) is the main contribution of our paper (c.f
Lemma 7.2). For instance, for I containing the off-diagonal tensor indices
Theorem 5.5 shows that this condition holds. The other conditions are
more standard. Condition (ii) imposes that the permutations QA0 lie in
some compact subset A ⊂ GL(d). This can be relaxed at the expense of
a more involved derivation for the required uniform law of large numbers.
Condition (iii) imposes that the weighting matrix is positive definite and we
will determine an optimal choice for W below. The moment condition (iv)
is necessary for applying the law of large numbers.

7.2. Asymptotic normality of generalized cumulant estimators. The
positive definite weighting matrix Wn can take different forms. In the ICA
literature Wn is often taken as the identity matrix [e.g. Comon and Jutten,
2010, Chapter 5], but we will show that different choices for Wn yield more
efficient estimates provided that sufficient moments of Y exist. Specifically,
when we take Wn such that it is consistent for the inverse of

(18) Σ = lim
n→∞

var(
√
nĝn(QA0))

we can ensure that the resulting estimate ÂWn achieves minimal variance in
the class of generalized cumulant estimators (17).

Let G(A) ∈ Rdg×d2 be the Jacobian matrix representing the derivative of
the function g : Rd×d → Rdg defined in (15). Here, defining the Jacobian we

think about g as a map from Rd2 vectorizing A.

Proposition 7.4 (Asymptotic normality). Suppose that the conditions of
Proposition 7.3 hold, (v) QA0 ∈ int(A) for some Q ∈ SP (d), (vi) E∥Yi∥2r <
∞, and denote by G = G(QA0). Then

(19)
√
nvec[ÂWn −QA0]

d→ N(0, (G′WG)−1G′WΣWG(G′WG)−1)
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for some Q ∈ SP(d), where Σ is given in (18). Moreover, for any Σ̂n
p→ Σ

we have that √
nvec[Â

Σ̂−1
n

−QA0]
d→ N(0, V ) .

for some Q ∈ SP(d) and V = (G′Σ−1G)−1.

This result allows for an interesting comparison. For ICA models under
full independence an efficient estimation method is developed in Chen and
Bickel [2006]. When we relax the independence assumption, and instead
only restrict higher order cumulant entries, the efficient estimator is given

by Â
Σ̂−1

n
. Here efficiency is understood in the sense that V is smaller when

compared to the variance in (19) for any W . Calculation similar to Cham-

berlain [1987] can be used to prove that Â
Σ̂−1

n
attains the semi-parametric

efficiency bound in the class of non-parametric models characterized by re-
strictions Ti = 0 for i ∈ I.

Implementing this estimator can be done in different ways. Proposi-
tion 7.3 shows that QA0 can be consistently estimated regardless of the
choice of weighting matrix. Given such first stage estimate, using say
Wn = Idg , we can estimate Σ consistently (under the assumptions of Propo-

sition 7.4). With this estimate we can compute Â
Σ̂−1

n
from (17). While

this estimate is efficient, the procedure can obviously be iterated until con-
vergence to avoid somewhat arbitrarily stopping at the first iteration, see
Hansen and Lee [2021] for additional motivation for iterative moment esti-

mators. Additionally, we may also consider Wn = Σ̂n(A)−1 as a weighting
matrix, hence parametrizing the asymptotic variance estimate as a function
of A, and minimize the objective function (17) using this weighting ma-
trix [e.g. Hansen et al., 1996]. The methodology for estimating Σ and V is
discussed in the Appendix D.

7.3. Testing over-identifying restrictions. While zero restrictions on
higher order cumulants can be motivated from several angles (c.f the dis-
cussion in Section 4), it is useful to test ex-post whether the restrictions
indeed appear to hold in a given application. In the setting where dg is
strictly greater then d2, i.e. the total number of restrictions is larger when
compared to the number of parameters in A, we can conduct a general
specification test following the moment based approach outlined in Hansen
[1982].

Proposition 7.5. If the conditions of Proposition 7.4 hold we have that as
n → ∞

Λn := nL̂
Σ̂−1

n
(Â

Σ̂−1
n
)

d→ χ2(dg − d2) .

The proposition implies that Λn can be viewed as a test statistic for
verifying the identifying restrictions. Specifically, when g(QA0) ̸= 0 the
statistic Λn diverges under most alternatives. That said, if any of the other
assumptions fails, e.g. the moment condition, the statistic will also fail to
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converge to a χ2(dg−d2) random variable. This implies that we should view
Proposition 7.5 as a general test for model misspecification.

A more refined test can be formulated when sufficient confidence ex-
ists in a subset of the identifying restrictions. To set this up let g(A) =
(g1(A), g2(A)) be a partition of the identifying cumulant restrictions such
that g1(A) has dimension dg1 ≥ d2. We propose a test for whether the
additional identifying restrictions g2(A) are valid.

Denote as earlier Λn = nL̂
Σ̂−1

n
(Â

Σ̂−1
n
) and let Λ0

n be similarly defined by

for a smaller set of identifying restrictions.

Proposition 7.6. If the conditions of Proposition 7.4 hold we have that as
n → ∞

Cn := Λn − Λ0
n

d→ χ2(dg − dg1) .

The test statistic Cn allows to verify whether adding the additional identi-
fying cumulant restrictions g2(A) is valid. The test rejects when g2(QA0) ̸=
0, that is, when the additional restrictions do not hold.

8. Numerical illustration

In this section we discuss the numerical implementation for the gener-
alized cumulant estimator (17) and evaluate its performance in different
simulation designs.

8.1. Diagonal tensors. We start by investigating the usefulness of diago-
nal tensors T r = cumr(ε), for orders r = 3, 4, for estimating A. To obtain
samples {Ys}ns=1 from model (1) under different distributions we sample the
errors independently from 9 different univariate distributions taken from
Bach and Jordan [2002a] and reproduced in Figure 8.1. We take d = 2, 3
and a sample size of n = 500.

For each sample we estimate A by minimizing L̂Wn(A) for Wn = Idg
and Wn = Σ̂−1

n . The former choice corresponds to the conventional choice
in the ICA literature and for r = 4 corresponds to the JADE algorithm.

The asymptotically optimal choice Wn = Σ̂−1
n is motivated by Proposi-

tion 7.4. Computationally, we first estimate A based on Wn = Idg with

dg =
(
d
2

)
+
(
d+r−1

r

)
− d, after which we compute Σ̂n following the discussion

in Appendix D, and repeat the estimation procedure using Wn = Σ̂−1
n . It

is important to point out that the kr statistics that are needed to compute
the entries of ĝn(A) can be rapidly computed using the function nPolyk as
provided in the kStatistics package for R, [e.g. Di Nardo et al., 2009].

For each simulation design we sample S = 1000 datasets and measure the
accuracy of the estimates using the Frobenius distance dF and the Amari
error dA [e.g. Bach and Jordan, 2002a, Chen and Bickel, 2006]:

dF (ÂWn , A0) = min
Q∈SP (d)

1

d2
∥Â−1

Wn
QA0 − Id∥F
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Figure 1. We show the univariate densities, as taken from Bach
and Jordan [2002a], that were used for simulating errors for the
diagonal cumulant tensor study.

and

dA(ÂWn , A0) =
1

2d

d∑
j=1

(∑n
j=1 |aij |

maxj |aij |
− 1

)
+

1

2d

d∑
j=1

(∑n
i=1 |aij |

maxi |aij |
− 1

)
,

where aij is the i, j element of A0Â
−1
Wn

. We report the averages of these
errors over the S datasets.

The results are shown in Table 8.1. A first key finding is that the estimates
obtained using the optimal weighting matrix are nearly always more accurate
when compared to taking Wn = Ig. This holds for r = 3 and r = 4, and for
both the Frobenious and Amari measures of error. The only exception is
found for the separated bi-modal densities 3. and 4. in the case where r = 3
and d = 3. This exception can be understood by noting third moments may
not be very informative for symmetric bi-modal densities and the efficient
weighting matrix cannot be estimated very accurately in these cases. In
all other setting efficient weighting improves the outcomes, implying that
conventional ICA algorithms can be modified in a simple way to increase
efficiency. We note that in some setting the efficiency gains can be as large
as 30-40%.
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r = 3 r = 4

Wn = Idg Wn = Σ̂−1
n Wn = Idg Wn = Σ̂−1

n

ε d dF dA dF dA dF dA dF dA

1. 2 0.12 0.19 0.09 0.13 0.06 0.08 0.04 0.06
3 0.12 0.25 0.08 0.18 0.07 0.15 0.05 0.10

2. 2 0.03 0.03 0.02 0.03 0.05 0.07 0.04 0.05
3 0.03 0.06 0.02 0.05 0.06 0.12 0.04 0.08

3. 2 0.12 0.18 0.09 0.12 0.03 0.04 0.03 0.03
3 0.11 0.23 0.13 0.33 0.03 0.07 0.03 0.06

4. 2 0.08 0.12 0.06 0.09 0.02 0.02 0.02 0.02
3 0.07 0.17 0.09 0.21 0.02 0.04 0.02 0.04

5. 2 0.14 0.21 0.09 0.12 0.04 0.06 0.04 0.05
3 0.14 0.27 0.12 0.25 0.05 0.09 0.04 0.08

6. 2 0.15 0.23 0.09 0.22 0.07 0.10 0.06 0.08
3 0.14 0.28 0.12 0.24 0.07 0.15 0.06 0.12

7. 2 0.02 0.03 0.02 0.03 0.05 0.08 0.04 0.06
3 0.02 0.05 0.02 0.04 0.06 0.13 0.05 0.10

8. 2 0.06 0.08 0.05 0.07 0.04 0.06 0.04 0.06
3 0.06 0.12 0.05 0.11 0.04 0.10 0.04 0.10

9. 2 0.07 0.10 0.06 0.09 0.07 0.10 0.06 0.08
3 0.06 0.12 0.06 0.12 0.07 0.14 0.06 0.13

Table 1. The table reports the average Frobenius norm (dF )
and Amari (dA) errors obtain under diagonal cumulant restrictions

for r = 3, 4 and weighting matrices Wn = Idg
and Wn = Σ̂−1

n .
The first column indicates the distribution from which the errors
are sampled, see Figure 8.1, and the second column indicates the
dimension of Y .

The differences between the orders r = 3 and r = 4 can be largely un-
derstood by reflecting on the underlying densities. For instance, for the
skewed density 2. using the r = 3 order cumulant tensor restrictions gives
more accurate estimates, whereas for Student’s t density 1. the r = 4 order
cumulant tensor is more accurate. Further, while the absolute accuracy as
measured by the Amari error increases when we increase the dimension d,
it is reassuring to see that for the averaged Frobinious norm measure, there
are little differences when increasing d.

8.2. Reflectionally invariant tensors. Next, we evaluate the performance
of the estimator (17) based on reflectionally invariant cumulant restrictions
for order r = 4. For this setting we sample the errors from different multi-
variate elliptical distributions: A. Student’s t with ν = 5, B. normal inverse
Gaussian, C. Laplace and D. hyperbolic. Clearly, in such designs the errors
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r = 4, reflectional r = 4, diagonal

Wn = Idg Wn = Σ̂−1
n Wn = Idg Wn = Σ̂−1

n

ε d dF dA dF dA dF dA dF dA

A. 2 0.18 0.26 0.17 0.26 0.27 0.41 0.23 0.36
3 0.22 0.51 0.22 0.52 0.27 0.62 0.26 0.62

B. 2 0.17 0.25 0.13 0.19 0.26 0.41 0.22 0.35
3 0.21 0.49 0.17 0.44 0.27 0.63 0.27 0.62

C. 2 0.17 0.25 0.15 0.22 0.26 0.40 0.22 0.34
3 0.19 0.52 0.18 0.51 0.27 0.64 0.26 0.63

D. 2 0.16 0.24 0.14 0.21 0.27 0.41 0.23 0.37
3 0.22 0.51 0.23 0.49 0.28 0.65 0.27 0.64

Table 2. The table reports the average Frobenius norm (dF ) and
Amari (dA) errors obtain under reflectionally invariant and (incor-
rect) diagonal cumulant restrictions for order r = 4 and weighting

matrices Wn = Idg
and Wn = Σ̂−1

n .. The first column indicates the
distributions from which the errors are sampled: A. multivariate
t-distribution 5 degrees of freedom, B. multivariate Normal Inverse
Gaussian, C. multivariate Laplace and D. multivariate Hyperbolic
distribution. The second column indicates the dimension of Y .

are not independent, but the reflectionally invariant cumulant restrictions
are still valid.

To investigate the consequences of incorrectly assuming independence we
compare with the estimator that relies on the (invalid) diagonal tensor T ∈
S4(Rd). For instance, for d = 2 the diagonal tensor sets incorrectly to zero
T1122 = 0.

The results for both the baseline Wn = Idg and efficient Wn = Σ̂−1
n

cumulant estimators are shown in Table 8.2. The key finding is that invalid
restrictions, e.g. incorrect independence assumptions, lead to large efficiency
losses. Even when only one entry is incorrectly set to zero both the frobinious
and Amari errors increase substantially. This holds for all specifications and
estimators considered.

Second, we find that in general the errors for the reflectionally invariant
tensor are larger when compared to those found in Table 8.1. This is un-
derstandable as less identifying restrictions are used. Third, the previous
conclusions regarding the weighting matrix continue to hold; the efficient
weighting matrix is nearly always preferable.

9. Discussion

In the ICA literature identifiability of (1) is assured when ε has indepen-
dent components out of which at most one is Gaussian. Although in the
classical ICA literature independence seems a natural assumption, in many
other applications it is considered too strong. Our paper proposes a general
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framework to study weak conditions under which A is identified up to some
finite and structured set.

We propose some non-standard approaches to study this identifiability
problem in the case of zero restrictions on fixed order cumulants of ε. We
obtain positive results for some important zero patterns. These results can
be used under strictly weaker conditions than independence and they assure
that A is identified up to the sign permutations group acting on its rowspace.
We note that with additional constraints, e.g. sign restrictions, these results
can be further strengthened to exact identifiability.

We focused on zero cumulant constraints but our set-up can be generalized
to general algebraic subsets V ⊆ Sr(Rd). This can be used for example, if
explicit constraints on the moments are preferred. Or when the cumulant
restrictions are imposed directly on Y instead of on ε.

While we have focused on relaxing the independence assumption in (1),
it is easy to see that similar techniques can be used to relax independence
assumptions in other linear models; e.g. measurement error models [Schen-
nach, 2021], triangular systems [Lewbel et al., 2021], and structural vector
autoregressive models [Kilian and Lütkepohl, 2017].
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Appendix A. Cumulants and k-statistics

For the reader’s convenience, in this appendix we collect some further
standard results on cumulants and their sample estimates (k-statistics) that
are used in this paper.

A.1. Combinatorial definition. Let Πr be the poset of all set partitions
of {1, . . . , r} ordered by refinement. For π ∈ Πr we write B ∈ π for a block
in π. The number of blocks of π is denoted by |π|. For example, if r = 3
then Π3 has 5 elements: 123, 1/23, 2/13, 3/12, 1/2/3. They have 1, 2, 2,
2, and 3 blocks respectively. If i = (i1, . . . , ir) then iB is a subvector of i
with indices corresponding to the block B ⊆ {1, . . . , r}. From Speed [1983]
it follows that for any multiset {i1, . . . , ir} of the indices {1, . . . , d} we can
write

(20) [κr(Y )]i1,...,ir =
∑
π∈Πr

(−1)|π|−1(|π| − 1)!
∏
B∈π

µiB ,

where B loops over each block in a given partition π and the raw moments
are denoted by µi1...il = EYi1Yi2 . . . Yil . For example,

[κr(Y )]i1,i2,i3 = µi1i2i3 − µi1µi2i3 − µi2µi1i3 − µi3µi1i2 + 2µi1µi2µi3

and note that for (i1, i2, i3) = (i, i, j) this formula gives

[κr(Y )]i,i,j = µiij − 2µiµij − µjµii + 2µ2
iµj .

The coefficients (−1)|π|−1(|π|−1)! in (20) have an important combinatorial
interpretation, which we now briefly explain. If P is a finite partially ordered
set (poset) with ordering ≤ we define the zeta function on P×P as ζ(x, y) =
1 if x ≤ y and ζ(x, y) = 0 otherwise. The Möbius function is then defined
by setting m(x, y) = 0 if x ̸≤ y and∑

x≤z≤y

m(x, z)ζ(z, y) =

{
1 if x = y,

0 otherwise.

Fixing a total ordering on P , we can represent the zeta function by a matrix
Z and then the matrix M representing the Möbius function is simply the
inverse of Z. If this total ordering is consistent with the partial ordering of
P then both Z and M are upper-triangular and have ones on the diagonal;
see Section 4.1 in Zwiernik [2016] for more details.

For the poset Πr the Möbius function satisfies for any ρ ≤ π (ρ is a
refinement of π)

(21) m(ρ, π) = (−1)|ρ|−|π|
∏
B∈π

(|ρB| − 1)!,

where |ρB| is the number of blocks in which ρ subdivides the block B of π.
In particular, denoting by 1 ∈ Πr the one-block partition, for every π ∈ Πr

m(π,1) = (−1)|π|−1(|π| − 1)!.
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To explain how m(π,1) appears in (20), we recall the Möbius inversion
formula, which becomes clear given the matrix formulation using Z and
M = Z−1.

Lemma A.1 (Möbius inversion theorem). Let P be a poset. For two func-
tions c, d on P , we have d(x) =

∑
y≤x c(y) for all x ∈ P if and only if

c(x) =
∑

y≤xm(x, y)d(y).

For example, this result gives a simple formula for moments in terms of
cumulants.

A.2. The law of total cumulance. The following results from Brillinger
[1969] will be also useful.

Proposition A.2 (Multivariate law of total cumulants). Let κs(X|H) be
the conditional s-th cumulant tensor of X given a variable H. We have

κr(X) =
∑
π∈Πr

cum
(
(κ|B|(X|H))B∈π

)
,

where for i = (i1, . . . , ir)[
cum((κ|B|(X|H))B∈π)

]
i
= cum ((cum(XiB |H))B∈π) .

It is certainly hard to parse this formula at first so we offer a short dis-
cussion. The expression cum((cum(XiB |H))B∈π) on the right denotes the
cumulant of order |π| of the conditional variances cum(XiB |H) for B ∈ π.
A special case of this result is the law of total covariance.

[κ2(X)]ij = cov(Xi, Xj) = E(cov(Xi, Xj |H)) + cov(E(Xi|H),E(Xj |H)),

where the first summand on the right corresponds to the partition 12 and the
second corresponds to the split 1/2. Since there are five possible partitions
of {1, 2, 3} the third order cumulant can be given in conditional cumulants
as

[κ3(X)]ijk = E(cum(Xi, Xj , Xk|H)) + cov(E(Xi|H), cov(Xj , Xk|H))

+ cov(E(Xj |H), cov(Xi, Xk|H)) + cov(E(Xk|H), cov(Xi, Xj |H))

+ cum(E(Xi|H),E(Xj |H),E(Xk|H)).

Proposition A.2 is useful for example if the components of X are condi-
tionally independent given H in which case all mixed conditional cumulants
vanish. Another scenario is when X conditionally on H is Gaussian, in
which case all higher order conditional tensors vanish.

A.3. Estimating cumulants with k-statistics. A canonical way of es-
timating cumulants is via so called multivariate k-statistics Speed [1983],
which generalized classical k-statistics introduced by Fisher [1930]. For a
collection of useful results on k-statistics see also [McCullagh, 2018, Chap-
ter 4].
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Specifically, the entries of the rth order k-statistic used to estimate the
cumulant κi1,...,ir are given by (see [McCullagh, 2018, (4.5)-(4.7)])

(22) [kr]i1,...,ir =
1

n

n∑
t1=1

· · ·
n∑

tr=1

Φt1,...,trYt1,i1 · · ·Ytr,ir

with Φ ∈ Sr(Rn) satisfying

Φt1···tr = (−1)ν−1 1(
n−1
ν−1

) ,
where ν ≤ n is the number of distinct indices in (t1, . . . , tn). Let Y ∈ Rn×d

be the data matrix. Then using our multilinear notation (22), trivially
extended to the case of a rectangular A, can be more compactly rewritten
as

(23) kr =
1

n
Y ′ • Φ ∈ Sr(Rd).

We note the following important result; see Proposition 4.3 in Speed [1986].

Proposition A.3. The k-statistic in (22) forms a U-statistic. In particu-
lar, it is an unbiased and it has the minimal variance among all unbiased
estimators.

Besides being unbiased and efficient, an additional benefit of working
with kr statistics is that there are several statistical packages available that
compute them, e.g. kStatistics for R and PyMoments for Python. The
first package uses the powerful machinery of umbral calculus to make the
symbolic computations efficient Di Nardo et al. [2009].

A.4. k-statistics and sample cumulants. For later considerations we
need to understand better the relation between kr and the natural plug-
in estimator κ̂r, which is obtained by first estimating the raw moments and
then plugging them into (20). The moments are estimated in the usual way

(24) µ̂r = (µ̂i1...ir) µ̂i1...ir =
1

n

n∑
s=1

Ys,i1Ys,i2 . . . Ys,ir ,

we also easily see that

(25) µ̂r =
1

n
Y ′ • Ir,

where Ir ∈ Sr(Rn) is the identity tensor, that is, the diagonal tensor satis-
fying (Ir)t···t = 1 for all 1 ≤ t ≤ n.

If B ⊆ [n] then write IB for the identity tensor in S|B|(Rn). For any
partition π ∈ Πr the tensor product

⊗
B∈π IB ∈ Sr(Rn) satisfies[⊗

B∈π
IB

]
t1···tr

=
∏
B∈π

[IB]tB =

{
1 ti = tj whenever i, j ∈ B ∈ π,

0 otherwise.
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For every π ∈ Πr, define coefficients

(26) c(π) =
∑
ρ≤π

m(ρ, π)(−1)|ρ|−1 1(
n−1
|ρ|−1

) = n
∑
ρ≤π

m(ρ, π)m(ρ,1)
1

(n)|ρ|
,

where m is the Möbius function on Πr given in (21) and (n)k = n(n −
1) · · · (n− k + 1) is the corresponding falling factor.

Lemma A.4. We have

Φ =
∑
π∈Πr

c(π)
⊗
B∈π

IB,

which gives an alternative formula for k-statistics

[kr]i1,...,ir =
∑
π∈Πr

n|π|−1c(π)
∏
B∈π

µ̂iB .

Proof. For any t1, . . . , tr let ν be the number of distinct elements in this
sequence and let π∗ be the partition [r] with ν blocks corresponding to
indices that are equal. We have(∑

π∈Πr

c(π)
⊗
B∈π

IB

)
t1···tr

=
∑
ρ≤π∗

c(ρ) = (−1)ν−1 1(
n−1
ν−1

) = Φt1···tr ,

where the first equality follows by the definition of π∗ and
⊗

B IB, and the
second equality follows directly by the Möbius inversion formula on Πr as
given in Lemma A.1.

The second claim follows from the fact that

kr
(23)
=

1

n
Y ′ • Φ =

1

n

∑
π∈Πr

c(π)
⊗
B∈π

(Y ′ • IB)
(25)
=

∑
π∈Πr

n|π|−1c(π)
⊗
B∈π

µ̂B,

where µ̂B is the symmetric tensor containing all |B| order sample moments
among the variables in B. □

In the analysis of the asymptotic difference between kr and the plug-in
estimator κ̂r we will use the following lemma.

Lemma A.5. For every π ∈ Πr we have

n|π|−1c(π)−m(π,1) = O(n−1).

Proof. As we noted in the proof of Lemma A.4, the Möbius inversion formula
in Lemma A.1 gives that

(27)
∑
ρ≤π

c(ρ) = (−1)|π|−1 1(
n−1
n−|π|

) .
Let 0 ∈ Πr be the minimal partition into r singleton blocks. By (27),
applied to π = 0,

nr−1c(0) = (−1)r−1 nr−1(
n−1
n−r

) = m(0,1)
nr

(n)r
,
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where (n)r = n · · · (n − r + 1) is the corresponding falling factorial. In
particular, nr−1c(0) = m(0,1) + O(n−1). Now suppose the claim is proven
for all partitions with more than l blocks. Let π be a partition with exactly
l blocks. If ρ < π then |ρ| > l and n|ρ|−1c(ρ) = m(ρ,1) +O(n−1) so

nl−1c(ρ) = nl−|ρ|n|ρ|−1c(ρ) = nl−|ρ|m(ρ,1) +O(nl−|ρ|−1) = O(nl−|ρ|).

This assures that

nl−1
∑
ρ≤π

c(ρ) = nl−1c(π) +O(n−1).

Using (27) in the same way as above, we get that n|π|−1c(π) = m(π,1) +
O(n−1) and now the result follows by recursion. □

A.5. Vectorizations of tensors. The dimension of the space of symmetric
tensors Sr(Rd) is

(
d+r−1

r

)
. Like for symmetric matrices, it is often convenient

to view T ∈ Sr(Rd) as a general tensor in Rd×···×d. In this case vec(T ) ∈ Rdr

is a vector obtained from all the entries of T .
Throughout the paper we largely avoided vectorization. This operation is

however hard to circumvent in the asymptotic considerations. If we make a
specific claim about the joint Gaussianity of the entries of a random tensor
T , we could use a more invariant approach of Eaton [2007]. However, using
vectorizations, makes the calculations more direct with no need to discuss
inverses of quadratic forms.

In this context we also often rely on the matrix-vector version of the tensor
equation S = A • T

(28) vec(S) = A⊗r · vec(T ),

where A⊗r = A⊗ · · · ⊗A if the r-th Kronecker power of A.

A.6. Asymptotic distribution of k-statistics. The fact that k-statistics
are U-statistics (c.f Proposition A.3) implies a couple of useful results for
our analysis. The most important one is that, under minor assumptions,√
nvec(kr−κr(Y )) is asymptotically normal with mean zero. In this section,

the main result provides the form of the asymptotic covariance matrix (see
Lemma A.6 below).

Let µ≤r be the vector containing all raw moments of a random vector

Y of order up to r (it has dimension
(
d+r
r

)
). Formula (20) gives an explicit

function for κr(Y ) in terms of µ≤r. For the vectorized tensor κr(Y ) we define

the Jacobian F = ∇µ′
≤r
vec(κr(Y )), which is a dr×

(
d+r
r

)
matrix. This matrix

is not a full rank but only because κr(Y ) is a symmetric tensor which has
many repeated entries. The submatrix obtained from F by taking the rows
corresponding to the unique entries of κr(Y ) has full row rank. This follows
because for any two r-tuples 1 ≤ i1 ≤ · · · ≤ ir ≤ d and 1 ≤ j1 ≤ · · · ≤ jr ≤ d
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we have that

∂κi1···ir
∂µj1···jr

=

{
1 if (i1, . . . , ir) = (j1, . . . , jr),

0 otherwise,

and so, this submatrix contains the identity matrix.
We collected together sample moments (24) of different orders to form

µ̂≤r. The covariance between two sample moments µ̂i and µ̂j , for i =
(i1, . . . , ik), j = (j1, . . . , jl), k, l ≤ r, is

cov(µ̂i, µ̂j) =
1

n2

n∑
s,t=1

cov(Ys,i1 · · ·Ys,ik , Yt,j1 · · ·Yt,jl)(29)

=
1

n
cov(Yi1 · · ·Yik , Yj1 · · ·Yjl).

Under suitable moment conditions, as formalized in the lemma below, we
have

µ̂≤r
p→ µ≤r and

√
n (µ̂≤r − µ≤r)

d→ N(0, H)

and since µ≤r only includes unique moments we may conclude that H is
positive definite and, by (29), its entries are

Hi,j = cov(Yi1 · · ·Yik , Yj1 · · ·Yjl)
for every k, l ≤ r and i = (i1, . . . , ik), j = (j1, . . . , jl). We note that H can
be consistently estimated by its sample version.

As in Appendix A.4, denote κ̂r to be the image of µ̂≤r under the map
(20). It then follows from the delta method that

(30)
√
n vec(κ̂r − κr(Y ))

d→ N(0, FHF ′) .

We emphasize that this particular estimator of cumulants will not be of
direct interest. What we need is the form of the covariance matrix in (30).
We will show that k-statistics kr have the same asymptotic distribution. In
this section kr is treated as a vector, kr ∈ Rdr .

Lemma A.6. If E∥Ys∥2r < ∞ we have that
√
n vec(kr − κr(Y ))

d→ N(0, FHF ′) .

Proof. By (30) and Slutsky lemma, it is enough to show that
√
n (kr−κ̂r)

p→
0. By Lemma A.4,

[kr − κ̂r]i1···ir =
∑
π∈Πr

(n|π|−1c(π)−m(π,1))
∏
B∈π

µ̂iB ,

where the coefficients c(π) are defined in (26). By Lemma A.5, n|π|−1c(π)−
m(π,1) = O(n−1) for all π ∈ Πr and so in particular

√
n(n|π|−1c(π)−m(π,1)) = o(1).

Under the stated moment assumption µ̂iB = Op(1) and so [kr−κ̂r]i1···ir =
oP (1), which completes the proof. □
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By Lemma A.6, every linear transformation of
√
nvec(kr − κr(Y )) will

be also Gaussian. We will be in particular interested in transformations
A⊗rvec(kr − κr(Y )) as motivated by the multilinear action of A on Sr(Rd)
(c.f (28)). We have

√
nA⊗rvec(kr − κr(Y ))

d→ N(0, A⊗rFH(A⊗rF )′) .

This asymptotic covariance matrix will get a name

(31) Σr = A⊗rFH(A⊗rF )′.

A similar analysis can be given if κr(Y ) is complemented with some other
lower order cumulants. We will use one version of that. Let F 2,r be the Jaco-
bian matrix of the transformation from µ≤r to cumulants vec(κ2(Y ), κr(Y )) ∈
Rd2+dr . By exactly the same arguments as above we get

(32)
√
n vec(k2 − κ2(Y ), kr − κr(Y ))

d→ N(0, F 2,rH(F 2,r)′) .

Recall from (14) that mS,T (A) = (A•S− Id, A •T ) and consider m(A) and
m̂n(A) as defined in section 7.

(33) vec(m̂n(A)−m(A)) = [A⊗2, A⊗r] · vec(k2 − κ2(Y ), kr − κr(Y )).

We will write A2,r = [A⊗2, A⊗r] and, using (32), we immediately conclude

√
n vec(m̂n(A)−m(A))

d→ N(0, A2,rF 2,rH(A2,rF 2,r)′) .

Let this asymptotic covariance matrix be denoted by

(34) Σ2,r = A2,rF 2,rH(A2,rF 2,r)′.

We summarize these general results in the following lemma adopting the
notation required for the main text.

Lemma A.7. Suppose {Ys}ns=1 is i.i.d.

(1) if E∥Ys∥r < ∞, then kp − κp(Y )
p→ 0 for all p ≤ r

(2) if E∥Ys∥2r < ∞, then

√
nA⊗rvec(kr − κr(Y ))

d→ N(0,Σr)

with Σr defined in (31).
(3) if E∥Ys∥2r < ∞, then

√
nvec(m̂n(A)−m(A))

d→ N(0,Σ2,r)

with Σ2,r defined in (34).
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Appendix B. Specific cumulant calculations

B.1. Scale mixture of normals. In Remark 5.8 we argue that for any
elliptical distribution with scale matrix Σ = Id all cumulant tensors need
to be reflectionally invariant. In this section we make some specific calcula-
tions specializing to scale mixtures of normals, which forms a big subfamily
of elliptical distributions. For these distributions we have the following sto-
chastic representation:

X = µ+
1√
τ
· Z ,(35)

where τ is a positive random variable with no atom at the origin, Z ∼
N(0,Σ) and τ ⊥⊥Z. The normal distribution corresponds to τ ≡ 1. If
τ ∼ χ2

ν/ν for ν > 2 then X has a multivariate t-distribution. If ν = 1 we
get the multivariate Cauchy, and if τ ∼ Exp(1) the multivariate Laplace
distribution. The following lemma defines the cumulant tensors for X.

Lemma B.1. If X has the scale mixture of normals distribution (35) with
µ = 0 then κ2(X) = E( 1τ )Σ, κr(X) = 0 if r is odd, and, if r = 2l,

(κr(X))i1···ir = κl(
1
τ )

∑
j1k1/.../jlkl

Σj1k1 · · ·Σjlkl ,

where the sum runs over all two-block partitions of the set {1, . . . , r} with
{j1, k1, . . . , jl, kl} = {1, . . . , r}.

Proof. Use the stochastic representation (35) of X in terms of a Gaussian
Z. It follows that the conditional distribution of X given τ is Gaussian with
mean µ and covariance 1

τΣ. Recall also that all cumulants of a mean zero
Gaussian vector are zero apart from the second order cumulants (covari-

ances). Denote by Π
(2)
r the set of partitions in Πr with all blocks precisely

of size 2. If r is odd then Π
(2)
r = ∅. By the law of total cumulants in

Proposition A.2, conditioning X on τ we get

[κr(X)]i1···ir =
∑

j1k1/···/jlkl∈Π
(2)
r

cum(cov(Xj1 , Xk1 |τ), . . . , cov(Xjl , Xkl |τ)).

We have cov(Xj , Xk|τ) = 1
τΣjk and so, using also multilinearity of cumu-

lants, the above formula further simplifies

[κr(X)]i1···ir =
∑

j1k1/···/jlkl∈Π
(2)
r

Σj1k1 · · ·Σjlklκr(1/τ)

giving the final formula. □

A special case is obtained for Σ = Id, where the formula in Lemma B.1
further simplifies. For a given i = (i1 · · · ir), let nj be the number of times
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the index j appeared in i. Then

(κr(X))i1···ir = κr(
1
τ )

{
0 if some nj is odd,

(n1 − 1)!! · · · (nd − 1)!! otherwise

with a convention that (−1)!! = 1. Note that so defined tensor κr(X) is
isotropic in the sense that Q • κr(X) = κr(X) for all Q ∈ O(d). This tensor
is not generic in the sense of Theorem 5.9.

B.2. Cumulants Gaussian mixture.

Lemma B.2. Denote ∆ = Σ2 − Σ1. If X is a mixture of zero-mean Gaus-
sians with parameters γ, Σ1, Σ2 then all the odd-order cumulants are zero.
If r = 2l ≥ 4 we have

(κr(X))i1...ir = κl(H) ·
∑

j1k1/···/jlkl

∆j1k1 · · ·∆jlkl .

Proof. Conditionally on H the variable X has a mean zero Gaussian dis-
tribution and the only non-zero conditional cumulants are the conditional
covariances. We have

cov(Xj , Xk|H) = (1−H)(Σ1)jk +H(Σ2)jk = (Σ1)jk +H∆jk.

As in the proof of Lemma B.1 we use the law of total cumulance to conclude
that

[κr(X)]i1···ir =
∑

j1k1/···/jlkl∈Π
(2)
r

cum(cov(Xj1 , Xk1 |H), . . . , cov(Xjl , Xkl |H)).

If l ≥ 2 (r ≥ 2) we can use the invariance of cumulants under translations
to simplify this to the claimed form. □

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. If the components of X are independent then κ =
κ4(X) is a diagonal tensor by Proposition 3.1. If γ ∈ {0, 1} this clearly
holds. But in this case the distribution of X is Gaussian. Suppose γ ∈ (0, 1)
so that κ2(H) > 0. By Lemma B.2, the condition κijjj = κiijj = κiiij = 0
for all i < j already implies that

(36) ∆ii∆ij = ∆jj∆ij = ∆ii∆jj + 2∆2
ij = 0.

The only way this holds for all i ̸= j is that either ∆ = 0 or ∆ii ̸= 0 for some
i but otherwise ∆ is zero. Indeed, if ∆ij = 0 then the first two constraints in
(36) imply that ∆ii = ∆jj = 0 but then the third constraint in (36) cannot
hold. We conclude that ∆ is diagonal. The third constraint in (36) shows
then that at most one diagonal entry can be non-zero.

If ∆ is zero then the conditional distribution of ε given H does not depend
on H and so it is Gaussian. Finally, consider the case when δ = ∆11 > 0
with the remaining entries of ∆ zero. Since this is a non-trivial mixture of
Gaussian distributions, at least one component of X must be non-Gaussian.
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Note however that the distribution of (X2, . . . , Xd) does not depend on H
and so it is Gaussian. It follows that exactly one component of X is non-
Gaussian. Moreover, by the independence of the components of X and by
the law of total covariance, for each i ̸= j

0 = cov(Xi, Xi) = E(cov(Xi, Xj |H)) = (Σ1)ij + γ∆ij = (Σ1)ij .

This proves that both Σ1 and Σ2 must be diagonal.
□

If we do not assume independence things are more interesting. In the
context of non-independent component analysis it is natural to assume that
ε is a mixture of two zero-mean Gaussian distributions with diagonal ma-
trices. If Y is a mixture of N (0,Σ1) and N (0,Σ2), this is equivalent to
assuming that both Σ1 and Σ2 are simultaneously diagonalizable by the
same orthogonal matrix.

Lemma B.3. Suppose that ε is a mixture of zero-mean Gaussian distribu-
tions with diagonal ∆. Then all odd-order cumulants are zero and (κr(ε))i ̸=
0 for even r only if all indices in i = (i1, . . . , ir) appear even number of times.
In particular, κr(ε) must be reflectionally invariant.

Proof. Follows immediately from Lemma B.2. □

B.3. Mean independence in the binary case. In this section we prove
Proposition 5.15. The condition Q • T ∈ V translates into two equations
(Q • T )12···2 = (Q • T )1···12 = 0. In other words,

Q11

∑
j

Q2j1 · · ·Q2jr−1T1j +Q12

∑
j

Q2j1 · · ·Q2jr−1T2j = 0

and

Q21

∑
j

Q1j1 · · ·Q1jr−1T1j +Q22

∑
j

Q1j1 · · ·Q1jr−1T2j = 0,

where in both cases the sum goes over all (r − 1)-tuples j. Note that, since
T is symmetric, the entry Ti depends only on how many times 1 appears in
i. Write tk = Ti if i has k ones. With this notation the two equations above
simplify to

r−1∑
k=0

(
r − 1

k

)
Q11Q

k
21Q

r−1−k
22 tk+1 +

r−1∑
k=0

(
r − 1

k

)
Q12Q

k
21Q

r−1−k
22 tk = 0

and
r−1∑
k=0

(
r − 1

k

)
Q21Q

k
11Q

r−1−k
12 tk+1 +

r−1∑
k=0

(
r − 1

k

)
Q22Q

k
11Q

r−1−k
12 tk = 0.

If one of the entries of Q is zero then Q is a permutation matrix. So assume
that Q has no zeros. Assume also without loss of generality that Q is a
rotation matrix, that is, Q11 = Q22 and Q12 = −Q21. Denote z = Q21/Q11,
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which corresponds to the tangent of the rotation angle and so it can take
any non-zero value (zero is not possible as Q21 ̸= 0). With this notation
and after dividing by Qr

11, the two equations become

(37)
r−1∑
k=0

(
r − 1

k

)
zktk+1 −

r−1∑
k=0

(
r − 1

k

)
zk+1tk = 0

and
r−1∑
k=0

(
r − 1

k

)
(−1)r−1−kzr−ktk+1 +

r−1∑
k=0

(
r − 1

k

)
(−1)r−1−kzr−1−ktk = 0.

It is convenient to rewrite the latter as

(38)

r−1∑
k=0

(
r − 1

k

)
(−1)kzk+1tr−k +

r−1∑
k=0

(
r − 1

k

)
(−1)kzktr−k−1 = 0.

Using the fact that t1 = tr−1 = 0, (37) can be written as

r−1∑
k=1

((
r − 1

k

)
tk+1 −

(
r − 1

k − 1

)
tk−1

)
zk = 0.

and (38) can be written as

r−1∑
k=1

((
r − 1

k

)
tr−k−1 −

(
r − 1

k − 1

)
tr−k+1

)
(−z)k = 0.

Since z ̸= 0, we can divide by it and in both cases we obtain two polynomials
of order r − 2. The first polynomial has coefficients

ak =

(
r − 1

k + 1

)
tk+2 −

(
r − 1

k

)
tk for k = 0, . . . , r − 2

and the second has coefficients

bk = (−1)k−1

((
r − 1

k + 1

)
tr−k−2 −

(
r − 1

k

)
tr−k

)
= (−1)kar−k−2.

A common zero for these two polynomials exists if and only if the corre-
sponding resultant is zero. Resultant is defined as the determinant of a
certain matrix populated with the coefficients of both polynomials. After
reordering the columns of this matrix, we obtain

a0 ar−2 0 0 · · · 0 0
a1 −ar−3 a0 ar−2 · · · 0 0
...

...
...

... · · ·
...

...
ar−2 (−1)ra0 ar−3 (−1)r−1a1 · · · a0 ar−2

0 0 ar−2 (−1)ra0 · · · a1 −ar−2

0 0 0 0 · · · a2 ar−3
...

...
...

... · · ·
...

...
0 0 0 0 · · · ar−2 (−1)ra0


.
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The first two columns are linearly independent of each other unless the sec-
ond is a multiple of the first. Indeed, if r is odd, this is only possible if
a0 = · · · = ar−2 = 0 (which cannot hold under the genericity assumptions).
If r is even this is possible if and only if either ak = (−1)kar−2−k for all
k, or ak = (−1)k−1ar−2−k for all k (which cannot hold under the generic-
ity assumptions). By the same argument, the third and the fourth column
are independent of each other and linearly independent of the previous two.
Proceeding resursively like that, we conclude that all columns in this ma-
trix are linearly independent proving that the two polynomials cannot have
common roots. In other words, there is no rotation matrix apart from the
0◦ and the 90◦ rotation matrices that satisfy Q • T ∈ V.

Appendix C. Omitted proofs from section 7

C.1. Proof of Proposition 7.3. The proof follows from verifying the con-
ditions for consistency of a general extremum estimator. Specifically, we will
verify the conditions of Theorem 2.1 in Newey and McFadden [1994]. We
restate the theorem for completeness.

Theorem C.1. Suppose that θ̂ minimizes L̂n(θ) over θ ∈ Θ. Assume that
there exists a function L0(θ) such that (a) L0(θ) is uniquely minimized at θ0,

(b) L0(θ) is continuous, (c) Θ is compact and (d) supθ∈Θ |L̂n(θ)−L0(θ)|
p→

0, then θ̂
p→ θ0.

Next, we verify assumptions (a)-(d) under assumptions (i)-(iv) stated

in Proposition 7.3. First, note that ÂWn minimizes L̂Wn(A) and we take
LW (A) as L0(θ) in Theorem C.1. Second, in our case the minimizer of
LW (A) is not unique but will correspond to any of the finite points QA0 for
some Q ∈ SP (d). It follows that our consistency result will only be up to
permutation and sign changes of the true A0 [e.g. Chen and Bickel, 2006].
Formally, for (a): suppose that A is such that A ̸= QA0 for any Q ∈ SP(d),
then g(A) ̸= 0 by assumption (i) and, since W is positive definite by (ii), we
have LW (A) > 0. Hence it follows that LW (A) is only minimized at QA0 for
some Q ∈ SP(d). Condition (b) follows as LW (A) is a composition of two
polynomial maps. Condition (c) follows from (ii). Condition (d) is assured
by the following result.

Lemma C.2. Suppose that {Ys}ns=1 is i.i.d, Wn
p→ W , E∥Ys∥r < ∞, and

A ⊂ GL(d) is a compact set. Then

sup
A∈A

|L̂Wn(A)− LW (A)| p→ 0

Proof. First, note that given the i.i.d. assumption and the moment condi-

tion (iv) we have that ∥kp − κr(Y )∥ p→ 0 for any p ≤ r by Lemma A.7 part
1. Note that the norm ∥ · ∥ on the tensor is defined in the usual way as the
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sum of the squares of all elements. Hence,

sup
A∈A

∥A⊗pvec(kp − κp(Y ))∥2 ≤ ∥kp − κp(Y )∥2 sup
A∈A

∥A⊗p∥2 p→ 0.

Here we used the fact that A is a compact and so, in particular, ∥A⊗p∥2 is
bounded on A.

Using (33), we get

sup
A∈A

∥m̂n(A)−m(A)∥2 ≤ sup
A∈A

∥A⊗2vec(k2 − κ2)∥2

+ sup
A∈A

∥A⊗rvec(kr − κr)∥2
p→ 0 .

As gS,T (A) is defined in (15) as a projection of mS,T (A) on certain coordi-
nates, we conclude that

sup
A∈A

∥ĝn(A)− g(A)∥ p→ 0.

By the triangle inequality∣∣∣L̂Wn(A)− LW (A)
∣∣∣ ≤ ∣∣∣L̂Wn(A)− LWn(A)

∣∣∣+ |LWn(A)− LW (A)| .

The second term is is readily bounded by ∥g(A)∥2∥Wn−W∥ using the basic
operator norm inequality. To bound the first term, note that, by the triangle
inequality∣∣∣L̂Wn(A)− LWn(A)

∣∣∣ =
∣∣∥ĝn(A)∥2Wn

− ∥g(A)∥2Wn

∣∣ ≤ ∥ĝn(A)− g(A)∥2Wn
,

which can be bounded by ∥ĝn(A)− g(A)∥2∥Wn∥. We conclude that∣∣∣L̂Wn(A)− LW (A)
∣∣∣ ≤ ∥ĝn(A)− g(A)∥2∥Wn∥+ ∥g(A)∥2∥Wn −W∥.

It follows that supA∈A |L̂Wn(A)− LW (A)| p→ 0 as required. □

We may now apply Theorem C.1 to conclude that ÂWn

p→ QA0 for some
Q ∈ SP(d).

C.2. Proof of Proposition 7.4. The proof follows from verifying the con-
ditions for asymptotic normality of a generalized moment or distance esti-
mator. Specifically, we will verify the conditions of Theorem 3.2 in Newey
and McFadden [1994]. We restate the theorem for completeness.

Theorem C.3. Suppose that θ̂ minimizes L̂n(θ) over θ ∈ Θ with Θ compact,

where L̂n(θ) is of the form ĝn(θ)
′Wnĝn(θ) and Wn

p→ W with W positive

semi-definite, θ̂
p→ θ0 and (a) θ0 ∈ Int(Θ), (b) ĝn(θ) is continuously differ-

entiable in a neighborhood N of θ0, (c)
√
nĝn(θ0)

d→ N(0,Ω), (d) there is

G(θ) that is continuous at θ0 and supθ∈Θ ∥∇θĝn(θ) − G(θ)∥ p→ 0, (e) for
G = G(θ0), G

′WG is nonsingular. Then,
√
n(θ̂ − θ0)

d→ N
(
0, (G′WG)−1G′WΩWG′(G′WG)−1

)
.
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The loss L̂n(θ) in Theorem C.3 corresponds to our L̂n(A). Our ĝn(A)

corresponds to their ĝn(θ). We have ÂWn

p→ Ã0 = QA0 for some Q ∈ SP(d)
by Proposition 7.3, and the conditions on the weighting matrix are satisfied
by (ii). Condition (a) of Theorem C.3 is satisfied by assumption (v). For
(b) note that ĝn(A) is a polynomial map in A and hence smooth. For (c), by

Lemma A.7,
√
n vec(m̂n(Ã0)−m(Ã0)) weakly converges to N(0,Σ2,r) with

Σ2,r defined in (34). However, ĝn(Ã0) is simply a projection of (m̂n(Ã0) −
m(Ã0)) onto the coordinates of V⊥. Therefore, it also weakly converges to
N(0,Σ), where

(39) Σ = D2,r
I Σ2,rD2,r′

I

with D2,r
I being a selection matrix that selects the corresponding to the

unique entries in Sr(Rd)⊕ V⊥.
We now show that (d) holds. The derivative of the map gS,T (A) in (15)

is a linear mapping from Rd×d to Rdg . It is obtained as a composition of the
derivative ofmS,T (A) given by the vectorized version of (KS,A(V ),KT,A(V )),
with each component defined in (9), and the projection πV . Thus, the
derivative is given by mapping V ∈ Rd×d to the vector

vec
(
(V,A) •S+(A, V ) •S, πV

(
(V,A, . . . , A) •T + · · ·+(A, . . . , A, V ) •T

))
.

The Jacobian matrix GS,T (A) representing this derivative has d2 columns
and the column corresponding to variable Aij is obtained simply by evalu-

ating the derivative at the unit matrix Eij ∈ Rd×d. In symbols, this column
is given by stacking the vector (Eij ⊗A+A⊗ Eij)vec(S) over the vector

(40)
(
(Eij ⊗A⊗ · · · ⊗A) + · · ·+ (A⊗ · · · ⊗A⊗ Eij)

)
· vec(T ),

and then selecting only the entries corresponding to the 2-tuples i ≤ j and
r-tuples in I.

Denote the Jacobian GS,T by G(A) if S = κ2(Y ), T = κr(Y ) and by Ĝ(A)

if S = k2, T = kr. The columns of Ĝ(A) − G(A) are like explained in (40)

with S = k2 − κ2(Y ) and T = kr − κr(Y ). Since ∥S∥ p→ 0 and ∥T∥ p→ 0
by Lemma A.7 part 1, and because A is fixed, the norm of each column

converges to zero. In consequence, for each A, ∥Ĝ(A) − G(A)∥ p→ 0. Since

A is compact and Ĝ(A)−G(A) is smooth, we conclude

(41) sup
A∈A

∥Ĝ(A)−G(A)∥ p→ 0.

This establishes part (d). To establish part (e) note that W is positive
definite and the JacobianG(QA0) has full column rank by Lemma C.4 below.

Lemma C.4. If V assures identifiability up to a sign permutation matrix,
then the matrix G(QA0) has full column rank for each Q ∈ SP(d).

Proof. It is enough to show that the derivative of g(A) at QA0 has trivial
kernel. We first analyze the S2(Rd)-part of the derivative. Suppose (QA0) •
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κ2(Y ) = Id and so the condition (V,QA0) • κ2(Y ) + (QA0, V ) • κ2(Y ) = 0
is equivalent to

(A−1
0 Q′V, Id) • Id + (Id, A

−1
0 Q′V ) • Id = 0.

Using the derivative KS,A notation given in (9), we write this last condition

asKId,Id(A
−1
0 Q′V ) = 0. Similarly, the V⊥-part implies thatKT,Id(A

−1
0 Q′V ) =

0 with T = κr(Y ). This implies that A−1
0 Q′V = 0 by Lemma 6.5 and the

fact that Id is an isolated point of GT . We conclude that V must be zero. □

Having verified all conditions of C.3 we can apply the theorem to prove
the first display in Proposition 7.4. The second display follows as a special

case when taking Wn = Σ̂−1
n , noting that Σ̂−1

n → Σ−1, and replacing W by
Σ−1 in the first display.

C.3. Proof of Proposition 7.5. Let Ã0 = QA0. Noting that ĝn(ÂΣ̂−1
n
)

minimizes ∥ · ∥2Wn
when taking Wn = Σ̂−1

n , we get that ĝn(ÂΣ̂−1
n
) = 0. Using

Taylor’s theorem we get that

0 = Σ̂−1/2
n

√
nĝn(ÂΣ̂−1

n
) = Σ̂−1/2

n

√
nĝn(Ã0) + Σ̂−1/2

n Ĝ(Ā)
√
nvec(Â

Σ̂−1
n

− Ã0),

where Ā lies on the segment between Ã0 and Â
Σ̂−1

n
. Pre-multiplying by

Ĝ(Ā)′Σ̂
−1/2
n and rearranging gives

√
nvec(Â

Σ̂−1
n

− Ã0) = −[Ĝ(Ā)′Σ̂−1
n Ĝ(Ā)]−1Ĝ(Ā)′Σ̂−1

n

√
nĝn(Ã0) .

Substituting
√
nvec(Â

Σ̂−1
n

− Ã0) back into the expansion above gives

Σ̂−1/2
n

√
nĝn(ÂΣ̂−1

n
) = N̂ Σ̂−1/2

n

√
nĝn(Ã0)

where

N̂ = Idg − Σ̂−1/2
n Ĝ(Ā)[Ĝ(Ā)′Σ̂−1

n Ĝ(Ā)]−1Ĝ(Ā)′Σ̂−1/2
n .

By the discussion preceding (39), we have Σ−1/2√nĝn(Ã0)
d→ Z ∼ N(0, Idg).

Note that this random variable differs from Σ̂
−1/2
n

√
nĝn(Ã0)

d→ Z ∼ N(0, Idg)

only by something that converges to zero in probability, as Σ̂n
p→ Σ. By

Slutsky’s lemma we have Σ̂−1/2√nĝn(Ã0)
d→ Z ∼ N(0, Idg), and from Propo-

sition 7.3, equation (41) and Σ̂n
p→ Σ and the continuous mapping theorem,

we get

(42) N̂
p→ N = Idg − Σ−1/2G(Ã0)[G(Ã0)

′Σ−1G(Ã0)]
−1G(Ã0)

′Σ−1/2 .

We note that N is a projection matrix of rank dg − d2. Combining we get

L̂
Σ̂−1

n
(Â

Σ̂−1
n
) =

(
Σ̂−1/2
n

√
nĝn(ÂΣ̂−1

n
)
)′ (

Σ̂−1/2
n

√
nĝn(ÂΣ̂−1

n
)
)

d→ Z ′NZ ∼ χ2(dg − d2) ,

where the last step follows from Rao [1973, page 186].
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C.4. Proof of Proposition 7.6. From the proof of Proposition 7.5 we have

Σ̂−1/2
n

√
nĝn(ÂΣ̂−1) = NΣ−1/2√nĝn(Ã0) + op(1),

where are N is the projection matrix defined in (42). Let ĝ1,n, G1, N1 be
the equivalent quantities to ĝn, G, N just computed for the smaller set of
identifying restrictions. Using similar arguments we get

Σ̂
−1/2
11

√
nĝ1,n(ÂΣ̂−1

11
) =N1Σ

−1/2
11

√
nĝ1,n(Ã0) + op(1)

=N1Σ
−1/2
11 [Idg1 : 0dg1×dg ]Σ

1/2Σ−1/2√nĝn(Ã0)

+ op(1) .

Define Ξ = Σ
−1/2
11 [Idm1

: 0dg1×dg ]Σ
1/2 and J = N1Ξ. Note that N is

idempotent and setB ≡ J ′J = Ξ′N1Ξ. We show that (i)N−B is idempotent
and (ii) N − B has rank dg − dg1 . First, letting N = Idg − P with P =

Σ−1/2G(Ã0)[G(Ã0)
′Σ−1G(Ã0)]

−1G(Ã0)
′Σ−1/2, we have

BN = B −BP (P ′P )−1P ′

= B − Ξ′N1ΞP (P ′P )−1P ′ ,

and N1ΞP = N1P1 = 0, such that BN = B. Using similar step we find that
NB = B. Finally, consider BB for which we have

BB = Ξ′N1ΞΞ
′N1Ξ

= Ξ′N1Σ
−1/2
11 Σ11Σ

−1/2
11 N1Ξ

= Ξ′N1Ξ = B

Combining we get that (N −B)(N −B) = N −B. For (ii) note that since
N − B is idempotent we have rank(N − B) = Tr(N − B) = dg − dg1 . To
complete the proof note that

Cn =
√
nĝn(Ã0)

′Σ̂−1/2′
n [N −B]Σ̂−1/2

n

√
nĝn(Ã0) + op(1)

d→ Z ′[N −B]Z ∼ χ2(dg − dg1) .

Appendix D. Computing the asymptotic variance

In this section we give computational details for estimating the asymptotic
variance matrices Σ and V as defined in Proposition 7.4. Starting with Σ,
it is useful to recall that

Σ = D2,r
I Σ2,rD2,r′

I with Σ2,r = A2,rF 2,rH(A2,rF 2,r)′ ,

where D2,r
I is a selection matrix that selects the corresponding to the unique

entries in Sr(Rd) ⊕ V⊥, A2,r = [A⊗2, A⊗r], F 2,r is the Jacobian matrix of
the transformation from µ≤r to cumulants (κ2, κr) and H is the covariance
matrix defined by entries in (29).

The moment matrix H and the Jacobian matrix F 2,r can be estimated
by replacing the population moments µ≤r by the sample moments µ̂≤r.
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Further, A2,r = [A⊗2, A⊗r] can replaced by its estimate Â2,r
Wn

= [Â⊗2
Wn

, Â⊗r
Wn

].
Combining we obtain the estimate

Σ̂n = D2,r
I Â2,r

Wn
F̂ 2,rĤ(Â2,r

Wn
F̂ 2,r)′D2,r′

I .

While this plug-in estimator is conceptually straightforward, it does require
determining the Jacobian F 2,r, which can be a tedious task. Fortunately it
is easy to see that Σ can be also estimated using a simple bootstrap. Let

ε̂n = ÂWnYn denote the n × 1 vector of residuals. We can resample these
residuals (with replacement) to get ε̂∗n and construct bootstrap draws of

ĝn(ÂWn), say g∗n. Repeating this B times allows to compute the bootstrap
variance estimate

Σ̂n/n =
1

B

B∑
b=1

g∗,bn g∗,b
′

n .

The 1/n comes from the definition Σ = limn→∞ var(
√
nĝn(QA0)). Using

the bootstrap has the benefit that no additional analytical calculations are

needed and evaluating g∗,bn only requires computing kp statistics, for p = 2, r,
for each bootstrap draw ε̂∗n.

At least in principle, the covariance between two k-statistics ki1···ir and
kj1···jr can be computed exactly for any given sample size using the general
formula for cumulants of k-statistics as given in Section 4.2.3 in McCullagh
[2018]. Although the covariance is arguably the simplest cumulant, the
formula still involves combinatorial quantities that are hard to obtain. Given
the moments of Y , we could also use the explicit formula (23) to obtain the
covariance in any given case by noting that

Evec(kr)vec(kr)′ =
1

n2
E
[
(Y ′)⊗rvec(Φ)vec(Φ)′Y ⊗r

]
.

Note however that vec(Φ) has nr entries with many of them repeated, so the
naive approach is very inefficient. An efficient, perhaps umbral, approach
to these symbolic computations could help to obtain better estimates of A.

Next, we compute the asymptotic variance V = (G′Σ−1G)−1, where
G = G(QA0) is the Jacobian matrix corresponding to g(A). Combining

the estimator ÂWn and the map (40) provides the estimate for G. Combin-
ing this an estimate for Σ as defined above allows to estimate V .
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