
Robust Inference for Non-Gaussian Linear

Simultaneous Equations Models∗

Adam Lee and Geert Mesters

Universitat Pompeu Fabra and Barcelona School of Economics

July 6, 2022

Abstract

All parameters in linear simultaneous equations models can be identified (up to per-
mutation and scale) if the underlying structural shocks are independent and if at most
one of them is Gaussian. Unfortunately, existing inference methods that exploit such
identifying assumptions suffer from size distortions when the true distributions of the
shocks are close to Gaussian. To address this weak non-Gaussian problem, we develop
a robust semi-parametric inference method that yields valid confidence intervals for the
structural parameters of interest regardless of the distance to Gaussianity. We treat
the densities of the structural shocks non-parametrically and construct identification
robust tests based on the efficient score function. The finite sample properties of the
methodology are illustrated in a large simulation study and an empirical study for
production function estimation.

JEL classification: C12, C14, C30

Keywords: Weak identification, semiparametric modeling, independent component
analysis, simultaneous equations.

∗Email: adam.lee@upf.edu, geert.mesters@upf.edu. Address: Jaume 1, Ramon Trias Fargas 25-
27, 08005, Barcelona, Spain. We thank numerous seminar participants for helpful comments. Mesters
acknowledge support from the Spanish Ministry of Economy and Competitiveness through the Ramon y
Cajal fellowship (RYC2019-028287-I), the Spanish Ministry of Economy and Competitiveness through the
Severo Ochoa Programme for Centres of Excellence in R&D (CEX2019-000915-S), and the Netherlands
Organization for Scientific Research (NWO) through the VENI research grant (016.Veni.195.036).

1



1 Introduction

The linear simultaneous equations model (LSEM) is a benchmark model used to analyze

general equilibrium relationships in economics. It was formalized in its modern form by

Haavelmo (1943, 1944), building on Frisch (1933) and Tinbergen (1939) among others. As

is well known, without further restrictions, not all parameters of the LSEM can be uniquely

identified from the first and second moments of the observed data series, see Dhrymes (1994)

for an in-depth discussion.

Interestingly, this identification problem vanishes (up to permutation and scale) when the

underlying structural shocks are independent and at most one of them follows a Gaussian

distribution (e.g. Comon, 1994). This identification approach has a long history in the statis-

tics and signal processing literatures where it is often referred to as independent components

analysis, see Hyvärinen, Karhunen and Oja (2001) for a textbook treatment. More recently,

the econometrics literature has started investigating this approach and developing the corre-

sponding methodology for conducting inference on the parameters of various LSEMs based

on non-Gaussian identification.1

Unfortunately, if in the true data generating process multiple structural shocks follow a

Gaussian distribution some structural parameters may be under- or un-identified and stan-

dard inference methods that aim to exploit non-Gaussian distributions may fail to control

size. Moreover, as is typical in models with points of identification failure, such behavior is

also observed if the true distributions of the shocks are sufficiently to close to Gaussianity,

relative to the sampling variation. Intuitively, in such weakly non-Gaussian settings lo-

cal identification deteriorates leading to coverage distortions when using standard inference

methods, such as maximum likelihood and moment methods.

Similar (weak) identification problems occur in many other econometric models, e.g. in-

strumental variable models, nonlinear regression models and many others, see Andrews and

Cheng (2012, 2013) for numerous examples. The key difference between this existing lit-

erature and the non-Gaussian LSEM is that, in the latter, the parameters responsible for

the possible identification failure are density functions, i.e. infinite dimensional parameters.

Therefore, whilst conceptually the identification problem is the same, providing robust in-

ferential methods requires a new approach which is capable of handling identification failure

caused by infinite dimensional nuisance parameters.

1See for instance: Lanne and Lütkepohl (2010), Moneta et al. (2013), Lanne, Meitz and Saikkonen
(2017), Maxand (2018), Lanne and Luoto (2021), Gouriéroux, Monfort and Renne (2017, 2019), Tank, Fox
and Shojaie (2019), Herwartz (2019), Herwartz, Lange and Maxand (2019), Bekaert, Engstrom and Ermolov
(2019, 2020), Fiorentini and Sentana (2022), Velasco (2022), Guay (2020), Moneta and Pallante (2020),
Drautzburg and Wright (2021), Sims (2021) and Davis and Ng (2022).
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To this extent, this paper develops a robust approach for conducting inference in LSEMs

that is inspired by the identification robust methods developed in econometrics (e.g. Stock

and Wright, 2000; Kleibergen, 2005; Andrews and Mikusheva, 2015) and the general semi-

parametric statistical theory that is discussed in Bickel et al. (1998) and van der Vaart

(2002). In brief, we treat the LSEM as a semiparametric model, where the densities of the

independent structural shocks are treated non-parametrically, and we construct confidence

bands for the possibly unidentified structural parameters of interest by inverting semipara-

metric score tests. The approach efficiently exploits non-Gaussianity when it is present in

the data and yields correct coverage regardless of the true distribution of the shocks.

Intuitively, the efficient score test that we propose is the semi-parametric analog of Ney-

man’s C(α) test (e.g. Neyman, 1979; Hall and Mathiason, 1990). In the conventional C(α)

test the scores of the parameter of interest are orthogonalized with respect to the scores of

the finite dimensional nuisance parameters. In our setting the nuisance parameter includes

the densities of the shocks, i.e. an infinite dimensional parameter. While such nuisance

functions result in the orthogonal projection being more technically demanding to derive,

the main idea of Neyman (1979) continues to apply.

We evaluate the finite sample performance of the semiparametric score test in a large

simulation study. This shows that regardless of how close the errors are to the Gaussian

distribution our test is correctly sized. In contrast, tests that are based on the sampling

variation of (pseudo)-maximum likelihood or GMM estimators have large size distortions in

weakly non-Gaussian settings. Further, for moderate sample sizes the power of the semipara-

metric test is comparable to the parametric score test that relies on knowing the functional

form of the density. When the parametric density of the (pseudo)-maximum likelihood score

test is misspecified the semi-parametric test is always found to be preferable.

To showcase the empirical value of our methodology we consider the estimation of the

coefficients in a production function (e.g. Marschak and Andrews, 1944; Hoch, 1958; Olley

and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg, Caves and Frazer, 2015). In con-

trast to the more recent literature, we explicitly model the correlation between the error

term and the production function inputs; capital and labor (e.g. Hoch, 1958), and we exploit

non-Gaussianity to identify the product function coefficients. We adopt this strategy for a

large sample of manufacturing firms.

Overall, we find that this approach is able to accurately pin down the production function

coefficients. We estimate the coefficient for labor between 0.4 and 0.8 and the coefficient for

capital is between 0.2 and 0.5. These estimates are (i) robust across a variety of model

specifications and (ii) vastly different from standard OLS estimates, potentially indicating a

strongly endogenous relationship.
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Throughout this paper we retain the assumption that the structural shocks are indepen-

dent which may not be the case in practice, see the discussions in Matteson and Tsay (2017),

Davis and Ng (2022) and Montiel Olea, Plagborg-Møller and Qian (2022). Therefore, in our

empirical study we test the independence of the structural shocks following the approach of

Matteson and Tsay (2017) and find that for our empirical application we cannot reject the

independence assumption.

The remainder of this paper is organized as follows. In the next section we provide

a simple example that illustrates the identification problem and intuitively discusses our

solution. Section 3 presents the main LSEM model and provides the implementation details

for the efficient score test. Section 4 discusses the main theoretical results including the

required assumptions. Sections 5 and 6 summarize the results from the simulation and

empirical studies. Section 7 concludes. Unless otherwise mentioned all proofs are provided

in the Appendix. Any references to sections, equations, lemmas etc. which start with “S”

refer to the supplementary material.

2 Illustrative example

In this section we use a simple example to illustrate: (i) the identification problem in LSEMs,

(ii) why conventional inference methods suffer from size distortions when the structural

shocks have densities close to Gaussian and (iii) how our proposed approach circumvents

such distortions.

The identification problem

Consider the simple bi-variate model

Yi = R′εi , i = 1, . . . , n , (1)

where Yi is a vector of observable variables, R is rotation matrix (i.e. R′R = I2) and εi

is a vector with independent structural shocks εi,k, for k = 1, 2, that have mean zero, unit

variance and common density η. For concreteness, we will parameterize the rotation matrix

as follows

R =

[
cos(α) − sin(α)

sin(α) cos(α)

]
, (2)

where α ∈ [0, 2π] and we let α0 denote the true parameter.2

2Note that in general a researcher may consider Yi = Σ1/2R′εi, where Σ1/2 is lower triangular. However,
the elements of Σ1/2 can be identified from the variance of Yi and pose no difficulty. Therefore we set the
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Figure 1: (Weak) Non-Gaussian Identification
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Notes: In the figure we show the expected log likelihood (red line) as a function of α (the true value is

α0 = π).

Model (1) has two parameters: the parameter of interest α and the infinite dimensional

nuisance parameter η. Suppose for now that η is known and let the log likelihood function

for Yi be denoted by `α(·). α is locally identified if the expected score of `α(Yi) with respect

to α is non-zero for all α 6= α0 in a neighborhood of α0.

Whether local identification occurs turns out to depend crucially on η. To illustrate,

consider the case where η is equal to the Gaussian density. Since εi is normalized we have

E`α(Yi) ∝ −
1

2
E(RYi)

′(RYi) = −1

and hence the expected loglikelihood takes the same value irrespective of α. This is plot-

ted in the top left panel of Figure 1, where we show the expected likelihood E`α(Yi) as a

function of α with α0 = π as the true parameter (an arbitrary choice). This illustrates the

variance of Yi to unity and exclude Σ1/2 for simplicity.
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standard identification problem in linear simultaneous equations models: without additional

identifying restrictions, the impact effects of the structural shocks are not identifiable when

the structural shocks follow a Gaussian distribution.

The other plots in Figure 1 show that this is no longer the case when we move away

from the Gaussian distribution. In each case the expected gradient becomes non-zero at

values α 6= α0 in the vicinity of α0, i.e. local identification occurs. While for the Student’s t

distribution with five degrees of freedom (i.e. t(5)) the change in the value of the expected

likelihood is substantial it is easy to see that for more modest deviations from Gaussianity

(e.g. t(15)) the difference is less pronounced. Further, note that non-Gaussian densities do

not imply that α is globally identified, instead identification is only up to permutation and

sign of the shocks.

Finite sample size distortions

In population α is always locally identified when all but one component of η is non-Gaussian

(Comon, 1994), but this is not sufficient for good performance of standard testing proce-

dures in finite samples. In particular, if the structural errors are too close to Gaussian, the

available identifying information may be small relative to the sampling variability. Standard

asymptotic approximations are not reliable in this setting and, as a result, testing procedures

based on these approximations may fail to provide reliable inference.

To illustrate how the density η affects standard inference methods in finite sample con-

sider Figure 2 which depicts the finite sample distribution of the t-statistic for the hypothesis

H0 : α = α0, based on the maximum likelihood estimator under the assumption that η is

known. The blue dashed lines show the N (0, 1) density. As can clearly be seen in this figure,

the quality of the approximation provided by the standard Normal depends crucially on the

underlying density, η. For a given sample size, the approximation deteriorates substantially

the closer η is to a standard Gaussian density.

This deterioration results in poor size control of standard tests. Table 1 shows the

empirical rejection frequencies for three standard tests in the same setting: Wald (W),

likelihood ratio (LR) and Lagrange multiplier (LM) (or score) tests, all computed under

the assumption that η is known. Specifically we drew 5000 samples {Yi}ni=1 from model

(1) for different η’s using different sample sizes n = 250, 500, 750. The empirical rejection

frequencies correspond to the test for H0 : α = α0 with nominal size a = 0.05, where the

critical values are based on the standard χ2(1) asymptotic approximation.

We find that the Wald test is severely size distorted for η close to Gaussian; in view of the

poor quality of asymptotic approximation depicted in Figure 2 this is not surprising. As η

gets closer to Gaussianity, the likelihood ratio test starts to under-reject as when α is poorly
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Figure 2: Poor asymptotic approximation close to Gaussianity
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Notes: In the figure we show the finite sample distribution of the t-statistic based on the maximum likelihood

estimator of α (the true value is α0 = π) for different sample sizes (n) and different degrees of freedom (ν)

in the (standardised) t distribution, all based on 5000 replications.

identified the likelihood values are very similar. Both of these tests are based on estimates

of α and, in weakly identified settings, such estimates will be inaccurate. In contrast, the

score test (LM) shows correct size as it fixes α = α0 under the null and α does not need to

be (well) identified for this test to be correctly sized.

Towards a semi-parametric score test

Now in practice, η will be unknown and needs to be estimated. To build up to our semi-

parametric approach, consider first the case where η is known up to a finite dimensional

parameter vector, say β (for example β may include the degrees of freedom of the Student’s

t distribution). For this case Neyman (1979) proposed a convenient extension of the standard
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Table 1: Rejection Frequencies for ML tests close to Gaussianity

t(15) t(10) t(5)

n W LM LR W LM LR W LM LR

250 25.26 4.42 3.74 20.56 4.24 4.04 8.88 4.84 4.08

500 21.76 4.54 4.52 13.10 4.38 3.60 6.38 4.42 4.92

750 17.12 4.96 3.94 9.90 4.88 3.42 6.12 5.28 5.64

Notes: The table shows the empirical rejection frequencies for the three maximum likelihood tests, under the

assumption that η is known and based on 5000 Monte Carlo replications for the baseline model Yi = R′εi.

The test has nominal size a = 0.05.

score test, that amounts to first orthogonalizing the scores for α with respect to the scores

for β and then computing a quadratic form of the score statistic. To illustrate let ˙̀(Yi) =

( ˙̀
α(Yi), ˙̀

β(Yi))
′, ˙̀

α(Yi) = ∇α`(Yi), ˙̀
β(Yi) = ∇β`(Yi) and Î = 1

n

∑n
i=1

˙̀(Yi) ˙̀(Yi)
′, denote the

score and information matrix for α and β. Neyman’s C(α) test statistic is given by

C(α) =

(
1√
n

n∑
i=1

κ̂(Yi)

)′
Î−1

(
1√
n

n∑
i=1

κ̂(Yi)

)
,

with

κ̂(Yi) = ˙̀
α − Îαβ Î−1

ββ
˙̀
β and Î = Îαα − Îαβ Î−1

ββ Îβα ,

where Î·· denote the corresponding blocks of Î.3 The (estimated) orthogonalized scores κ̂(·)
are often referred to as the (estimates of the) efficient scores and Î is the corresponding

(estimate of the) efficient information matrix. When evaluating C(α) at α = α0 and β̂,

some
√
n consistent estimate for β, this statistic will converge to a standard χ2 limit under

the null provided that Î is invertible.4 Tests based on C(α) retain correct size regardless

of whether α is well identified as α is fixed under H0, making them attractive for settings

where identification failure due to finite dimensional nuisance parameters is a concern (e.g.

Andrews and Mikusheva, 2015).

In the present paper, we will not impose that the parametric form of η is known up to

finite dimensional parameters but instead treat η non-parametrically. Despite this change,

3This is numerically equivalent to the “usual” score test provided the nuisance parameter β is estimated
by (restricted) maximum likelihood under the null hypothesis (Kocherlakota and Kocherlakota, 1991).

4In our general framework below we explicitly allow Î to be singular and rely on an eigenvalue truncated
generalized inverse, see also Andrews (1987), Lütkepohl and Burda (1997) and Andrews and Guggenberger
(2019).
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our approach is similar to that sketched above. We will first orthogonalize the score for α

with respect to the scores for η and obtain a semi-parametric analog of the conventional

Neyman C(α) test. This requires technical adjustments as the scores with respect to η need

to be defined differently and the projection with respect to η scores requires more care. For

this we follow the semi-parametric literature as outlined in the textbooks of Bickel et al.

(1998) and van der Vaart (2002).

3 Robust inference for LSEMs

In this section we discuss the implementation of the semi-parametric score test for a general

class of linear simultaneous equations models.

3.1 General model and objectives

We consider the linear simultaneous equations model for a random sample of the K × 1

endogenous variables Yi, the d×1 exogenous variables Xi = (1, X̃ ′i)
′ and the K×1 structural

shocks εi. Specifically,

Yi = BXi + A−1εi , i = 1, . . . , n , (3)

where the matrices B and A−1 map the explanatory variables and the structural shocks to

the endogenous variables. The density functions of the components of εi = (εi1, . . . , εiK)′ are

denoted by (η1, . . . , ηK) and the density of X̃i is given by η0. We set η = (η0, η1, . . . , ηK).

As illustrated in the previous section, depending on the shapes of η1, . . . , ηK we may

not be able to identify all parameters in A. To model this we let A = A(α, σ), where

A(α, σ) is a function of the possibly unidentified parameters α and parameters σ which

can be always identified from the variance of Yi − BXi. We let α ∈ A ⊂ RLα and set

β = (σ, b) ∈ B ⊂ RLσ × RLb = RLβ , with b = vec(B). The following two examples illustrate

possible parametrizations for A(α, σ) that are of practical interest.

Example 1 (Rotation matrix). Let A(α, σ)−1 = Σ1/2R′, where Σ1/2 is lower triangular and

R is a rotation matrix. In this setting we can take σ = vech(Σ1/2) and α parametrizes

R using the trigonometric transformation (as in Section 2) or the Cayley or exponential

transformation of a skew-symmetric matrix (e.g. Gouriéroux, Monfort and Renne, 2017;

Magnus, Pijls and Sentana, 2021).

Example 2 (Supply and demand). For K = 2 let Yi1 denote the quantity of some good and
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Yi2 its price. A simple model (omitting covariates for convenience) is given by

Y d
i1 = aYi2 + σ1εi1 (demand)

Y s
i1 = bYi2 + σ2εi2 (supply)

where εi1 and εi2 are independent demand and supply shocks, and in equilibrium we have

Y d
i1 = Y s

i2. We can accommodate this set up by letting α = (a, b), β = (σ1, σ2) and defining

the mapping A(α, σ) according to

A(α, σ) =

[
σ−1

1 0

0 σ−1
2

][
1 −a
1 −b

]
.

In the remainder we leave the precise mapping A(α, σ) unspecified, but we will require

that it satisfies certain smoothness conditions.

The general LSEM (3) depends on the triplet of parameters θ = (α, β, η), which includes

the possibly unidentified parameters α, the finite dimensional nuisance parameters β = (σ, b)

and the infinite dimensional nuisance parameters η. We will refer to β as nuisance parameters

as our main interest is in conducting inference on α, but clearly β could also be an object of

interest. To conduct inference on α without making a priori assumptions on the identification

strength of α, i.e. without assuming that sufficiently many ηk’s are non-Gaussian, we consider

hypothesis tests of the form

H0 : α = α0 against H1 : α 6= α0 . (4)

Such test statistics can then be inverted to yield confidence intervals for α with correct

coverage.

The problem formulation reflects that we aim for a procedure that is valid for all densities

ηk, for k = 1, . . . , K, Gaussian or not. A related set-up is found in Risk, Matteson and

Ruppert (2019) and Jin, Risk and Matteson (2019) who assume that the structural shocks

can be separated into exactly Gaussian and non-Gaussian shocks. We do not impose such

structure, but we note that if indeed shocks can be separated in this way our approach will

remain valid, but likely less efficient when compared to Risk, Matteson and Ruppert (2019).

3.2 Efficient score test for LSEMs

Next, we provide a step by step implementation guide for the semi-parametric score test,

with the theoretical justification postponed to the next section.
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Efficient score and information matrix estimates

As a first step, let ˆ̀
γ(Vi) denote the estimates for efficient scores of the finite dimensional

parameters γ = (α, β) of the LSEM (3) evaluated at Vi = Yi − BXi and γ. Intuitively,

these are the estimates for the scores of the parameters γ that are obtained after projecting

out the infinite dimensional nuisance parameter η. As we show in the appendix, consistent

estimates for the components of ˆ̀
γ(Vi) are given by

ˆ̀
γ(Vi) =

[
ˆ̀
γ,α(Vi)

ˆ̀
γ,β(Vi)

]
=

[
{ˆ̀γ,αl(Vi)}

Lα
l=1

{ˆ̀γ,βl(Vi)}
Lβ
l=1

]
with ˆ̀

γ,β(Vi) =

[
ˆ̀
γ,σ(Vi)

ˆ̀
γ,b(Vi)

]
=

[
{ˆ̀γ,σl(Vi)}

Lσ
l=1

{ˆ̀γ,bl(Vi)}
Lb
l=1

]
,

and

ˆ̀
γ,αl(Vi) =

K∑
j,k=1,j 6=k

ζαl,k,jφ̂k(Ak•Vi)Aj•Vi +
K∑
k=1

ζαl,k,k [τ̂k,1Ak•Vi + τ̂k,2κ(Ak•Vi)]

ˆ̀
γ,σl(Vi) =

K∑
j,k=1,j 6=k

ζσl,k,jφ̂k(Ak•Vi)Aj•Vi +
K∑
k=1

ζσl,k,k [τ̂k,1Ak•Vi + τ̂k,2κ(Ak•Vi)]

ˆ̀
γ,bl(Vi) =

K∑
k=1

[−Ak•Db,l][(Xi − X̄n)φ̂k(Ak•Vi)− X̄n(ς̂k,1Ak•Vi + ς̂k,2κ(Ak•Vi))]

(5)

where Ak• denotes the kth row of A, κ(z) = 1− z2, ζαl,k,j := [Dα,l]k•A
−1
•j , ζσl,k,j := [Dσ,l]k•A

−1
•j ,

Dα,l = ∂A(α, σ)/∂αl, Dσ,l = ∂A(α, σ)/∂σl, Dbl = ∂B/∂bl and X̄n = n−1
∑n

i=1Xi. The

coefficients τ̂k = (τ̂k,1, τ̂k,2)′ and ς̂k = (ς̂k,1, ς̂k,2)′ are given, for k = 1, . . . , K, by

τ̂k = M̂−1
k

(
0

−2

)
, ς̂k = M̂−1

k

(
1

0

)
, M̂k =

(
1 1

n

∑n
i=1(Ak•Vi)

3

1
n

∑n
i=1(Ak•Vi)

3 1
n

∑n
i=1(Ak•Vi)

4 − 1

)
. (6)

Finally, the efficient score estimates (5) depend on φ̂k(·): the estimate for the log density

score φk(x) = ∂ηk(x)/∂x. Such estimates can be obtained in different ways and our preferred

approach is based on using B-splines as in Jin (1992) and Chen and Bickel (2006). We can

define such estimates as

φ̂k(x) = γ̂′kbk(x) with γ̂k = −

[
n∑
i=1

bk(Ak•Vk,i)bk(Ak•Vk,i)
′

]−1 n∑
i=1

ck(Ak•Vk,i) , (7)

where bk(x) = (bk,1(x), . . . , bk,Bk(x))′ is a collection of Bk cubic B-splines and ck(x) =

(ck,1(x), . . . , ck,Bk(x))′ are their derivatives: ck,i(x) =
dbk,i(x)

dx
for each i = 1, . . . , Bk, see

de Boor (2001) for more details on B-splines. In practice we rely on equally spaced knots
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with upper and lower end points taken to be the 95th and 5th percentile of the samples

{Ak•Vi,k}ni=1 adjusted by log(log(n)). We use Bk = 6 splines in our main simulations below

and investigate the sensitivity of this choice.

Given the estimates of the efficient scores we estimate the efficient information matrix,

which is the variance matrix of the efficient score function, as

Îγ =
1

n

n∑
i=1

ˆ̀
γ(Vi)ˆ̀

γ(Vi)
′ with partitioning Îγ =

[
Îγ,αα Îγ,αβ

Îγ,βα Îγ,ββ

]
. (8)

Efficient score statistic

To compute the efficient semi-parametric score statistic for testing H0 : α = α0 we first

orthogonalize the efficient scores for α with respect to those for β = (σ, b). Since, β is finite

dimensional the estimates of the resulting orthogonalized scores and information for α are

given by

κ̂γ(Vi) = ˆ̀
γ,α(Vi)− Îγ,αβ Î−1

γ,ββ
ˆ̀
γ,β(Vi) and Îγ = Îγ,αα − Îγ,αβ Î−1

γ,ββ Îγ,βα . (9)

These are estimates of the population efficient score and efficient information matrix. Impor-

tantly, the latter may not be positive definite in our setting. For instance, when the densities

ηk correspond to the Gaussian density, Iγ is singular, see Lemma S11 in the supplementary

material.

With κ̂γ(Vi) and Îγ we can define the efficient score statistic for the LSEM model as

function of γ = (α, β) and Vi = Yi −BXi by

Ŝγ =

(
1√
n

n∑
i=1

κ̂γ(Vi)

)′
Ît,†γ

(
1√
n

n∑
i=1

κ̂γ(Vi)

)
, (10)

where Ît,†γ denotes the generalized inverse of the eigenvalue truncated efficient information

matrix Îγ (e.g. Lütkepohl and Burda, 1997). Formally,

Îtγ = ÛnΛ̂n(νn)Û ′n , (11)

where Λ̂n(νn) is a diagonal matrix with the νn-truncated eigenvalues of Îθ on the main

diagonal and Ûn is the matrix of corresponding orthonormal eigenvectors. To be specific, let

{λ̂n,i}Li=1 denote the non-increasing eigenvalues of Îθ, then the (i, i)th element of Λ̂n(νn) is

given by λ̂n,i1(λ̂n,i ≥ νn).

Equations (5)-(11) define the semi-parametric score statistic for the LSEM model (3) for
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a given parameter vector γ = (α, β). To test the null hypothesis (4) we will evaluate this

test statistic at α = α0, i.e. fixing the possibly unidentified parameters under the null, and

at β̂, which can be any
√
n consistent estimate for β. In our simulations, we use ordinary

least squares estimates for σ and b = vec(B), or one-step efficient estimates following van der

Vaart (2002, Section 7.2). Let γ̂ = (α0, β̂), in our theoretical section below we show that

under suitable assumptions the score statistic will converge to a χ2 limit. Specifically, we

prove that under H0 for any a ∈ (0, 1) we have

lim
n→∞

P (Ŝγ̂ > cn) ≤ a , (12)

where cn is the 1 − a quantile of the χ2
rn distribution with rn = rank(Îtγ̂). Importantly, as

we show in section 4 this result does not rely on any assumptions regarding the shape of

the densities η, i.e. we do not need to assume that η is non-Gaussian. Only conventional

moment assumptions and some regularity conditions on the densities are required. The

following algorithm summarizes the complete implementation.

Algorithm: Efficient score test for LSEM

1 Obtain
√
n-consistent estimates β̂ = (σ̂, b̂) and residuals V̂i = Yi − B̂Xi;

2 For k = 1, . . . , K, compute φ̂k(Âk•V̂i) from (7) with Â = A(α0, σ̂);

3 Compute the efficient scores ˆ̀̂
γ(V̂i) from (5) and the information matrix Îγ̂

from (8) using γ̂ = (α0, β̂);

4 Compute κ̂γ̂(V̂i) and Îγ̂ from (9).

5 Compute the score statistic Ŝγ̂ from (10) and reject H0 : α = α0 if Ŝγ̂ > cn,

where cn is the 1− a quantile of the χ2
rn distribution with rn = rank(Îtγ̂).

The algorithm highlights that the computational cost for evaluating the semi-parametric

score statistic Ŝγ̂ is modest; effectively one only needs to compute K B-spline regressions

to obtain the log density scores. Importantly, this implies that the algorithm can be imple-

mented without relying on numerical optimization routines. Confidence sets for α can be

constructed by inverting the score statistic over a range of values for α0.

13



4 Asymptotic theory

In this section we present our main theoretical results and discuss the required underlying

assumptions.

4.1 Assumptions

We assume that we observe a random sample {(Yi, X̃i)}ni=1 from model (3) where the under-

lying components satisfy the following.

Assumption 1. For εi = (εi,1, . . . , εi,K)′ in model (3), each component εi,k has a continuously

differentiable root density (with respect to Lebesgue measure on R). We write the density as

ηk with log density score φk(x) = ∂ log ηk(x)/∂x. We assume that for all k = 1, . . . , K and

some δ > 0

1. Eεi,k = 0, Eε2i,k = 1, Eε4+δ
i,k <∞, E(ε4i,k)− 1 > E(ε3i,k)

2, and Eφ4+δ
k (εi,k) <∞;

2. Eφk(εi,k) = 0, Eφk(εi,k)εi,k = −1, Eφk(εi,k)ε2i,k = 0 and Eφk(εi,k)ε3i,k = −3;

3. εi,k is independent of εi,l for all k 6= l;

4. η0 ∈ Z is a density function (with respect to Lebesgue measure on Rd−1) such that if

X̃i ∼ η0, then EX̃iX̃
′
i is positive definite and E[|X̃i,l|4+δ] <∞ for all l = 1, . . . , d− 1;

5. εi and X̃i are independent.

The first part normalizes the errors to have mean zero, variance one and finite four+δ

moments,5 hence ruling out heavy tailed errors.6 Additionally, we require the log density

scores φk(x) = ∂ log ηk(x)/∂x evaluated at the errors to have finite four+δ moments. The

second part simplifies the construction of the efficient score functions. Whilst this may at

first glance appear a strong condition, Lemma S12 in the supplementary material shows that

if the first part holds, then a simple sufficient condition is that the tails of the densities ηk

converge to zero at a polynomial rate.7 The third part imposes that the components of εi are

independent. Part four imposes some structure on X̃i that allows us to identify B; notably

positive definite second moments and four+δ finite moments are required. Part five requires

5E(ε4i,k)−1 ≥ E(ε3i,k)2 always holds; this is known as Pearson’s inequality. See e.g. result 1 in Sen (2012).

Assuming that E(ε4i,k)−1 > E(ε3i,k)2 rules out (only) cases where 1, εi,k and ε2i,k are linearly dependent when
considered as elements of L2. See e.g. Theorem 7.2.10 in Horn and Johnson (2013).

6Heavy tailed errors in ICA and SVAR models have recently been considered in Davis and Ng (2022) and
Davis and Fernandes (2022), but an inferential theory remains to be developed.

7See Example S1 in the supplementary material for an explicit example of a density which satisfies the
first part of the assumption but not the second.
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the explanatory variables and errors to be independent. This can be relaxed by requiring

the moment assumptions in 1 to hold conditional on X̃i. In this setup, our general theory

as outlined in this section would continue to be valid though the resulting efficient score

function would take a different form.

Most important is what is not in Assumption 1: there is no condition that imposes that

a certain number of components of εi have a (sufficiently) non-Gaussian distribution.

The second assumption that we impose is only required for the estimation of the log

density scores φ(x) = ∂η(x)/∂x using B-spline regressions and can be appropriately replaced

when a different density score estimator is used. For notation purposes, let ΞL
k,n and ΞU

k,n

denote the lower and upper endpoints of the cubic B-splines for φk(x) for k = 1, . . . , K.8

Assumption 2. Define νn according to ν2
n,p = o(νn) with p := min{1 + δ/4, 2} and νn,p =

n(1−p)/p if p ∈ (1, 2) or νn,p = n−1/2 log(n)1/2+ρ, for some ρ > 0, if p = 2. Let φk,n :=

φk1[ΞLk,n,Ξ
U
k,n] and ∆k,n := ΞU

k,n − ΞL
k,n and suppose that for , [ΞL

k,n,Ξ
U
k,n] ↑ Ξ̃ ⊃ supp(ηk) and

δk,n ↓ 0 such that

(i) P (εi,k /∈ [ΞL
k,n,Ξ

U
k,n]) = o(ν2

n);

(ii) For some ι > 0, n−1∆2+2ι
k,n δ

−(8+2ι)
k,n = o(νn);

(iii) ηk is bounded (‖ηk‖∞ <∞) and differentiable, with a bounded derivative: ‖η′k‖∞ <∞;

(iv) For each n, φk,n is three-times continuously differentiable on [ΞL
k,n,Ξ

U
k,n] and ‖φ(3)

k,n‖2
∞δ

6
k,n =

o(νn);9

(v) There are c > 0 and N ∈ N such that for n ≥ N we have inft∈[ΞLk,n,Ξ
U
k,n] |ηk(t)| ≥ cδk,n.

First, the assumption makes explicit the truncation rate νn that is needed for the trun-

cation of the eigenvalues in (11). This rate is split into two parts. The “slow” rate n(1−p)/p

(for p ∈ (1, 2)) is always sufficient given assumption 1, but if εk has finite eighth moments

the faster rate applies.

Part (i) imposes that the tails of εi,k decay to zero sufficiently fast.10 Part (ii) ensures

that the number of knots does not grow to fast relative to the sample size (and the trun-

cation rate). Part (iii) requires the density and its derivative to be bounded. Part (iv)

requires the existence of the third derivatives of φk and that the rate of increase of the third

derivative is not too great. Part (v) ensures that the density is bounded away from zero

8In practice, we select these points as the lower 5th and upper 95th percentiles of the samples {Vi,k}ni=1

adjusted by log log n, see the implementation section 3.
9The differentiability and continuity requirements at the end-points are one-sided.

10The required speed of decay is linked to the truncation rate.
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on [ΞL
k,n,Ξ

U
k,n]. Overall, these assumptions are similar as in Chen and Bickel (2006), with

two key differences.11 Firstly, Chen and Bickel (2006) require the conditions to hold for

the functions v 7→ φk(Ak•v) (rather than φk), uniformly over shrinking balls (at rate n−1/2)

around A. In our setting we are only interested in testing as consistent estimation is ruled

out by the possible lack of identification, hence we only require the conditions to hold for

the functions φk. Secondly, unlike Chen and Bickel (2006), we require convergence at a

rate νn which satisfies certain decay conditions. This is due to the fact that we may have

a singular efficient information matrix and in order to obtain a consistent estimate of the

Moore – Penrose inverse of this matrix, we require knowledge of the rate of convergence of

our estimate.

4.2 Main result

In this section we formally state our main result for the efficient score test Ŝγ̂. To do so,

instead of evaluating the efficient score test at the
√
n-consistent estimates γ̂ = (α0, β̂) we will

evaluate the score test at its discretized version γ̄ = (α0, β̄n). Formally, let Bn = n−1/2CZLβ

for some C > 0 and define β̄n as a new version of β̂ that replaces its value with the closest

point in Bn. Note that this changes each coordinate of β̂ by a quantity which is at most

O(n−1/2), hence the
√
n-consistency is retained by discretization. Since the constant C can

be chosen arbitrarily small this change has no practical relevance for the implementation of

the test.

The advantage of relying on discretized estimates is that it simplifies the proof of the

main result. Specifically, it removes the need to show uniform convergence between the

efficient scores evaluated at β̂ and β. The discretization trick is due to Le Cam (1960) and is

widely used in statistics, see the detailed discussion in Le Cam and Yang (2000, Section 6.3),

or van der Vaart (1998, page 72). It has also been adopted in econometrics, see Cattaneo,

Crump and Jansson (2012) for instance.

With this modification we have the following result.

Theorem 1. Suppose that Assumptions 1 and 2 hold, that (α, σ) 7→ A(α, σ) is continuously

differentiable and the maps (α, σ) 7→ ζαl,k,j and (α, σ) 7→ ζσl,k,j are Lipschitz continuous. Let

rn = rank(Îtγ̄) and denote by cn the 1− a quantile of the χ2
rn distribution, for any a ∈ (0, 1).

Then, under H0

lim
n→∞

Pθ0(Ŝγ̄ > cn) ≤ a,

with inequality only if rank(Ĩγ0) = 0 where γ0 = (α0, β).

11Cf. their conditions C3, C5 – C7, p. 2834.
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The proposition shows that semi-parametric score test Ŝγ̄ has correct asymptotic size

for all densities η that satisfy the requirements in Assumptions 1 and 2. The requirements

that (α, σ) 7→ A(α, σ) is continuously differentiable and (α, σ) → ζαl,k,j, (α, σ) → ζσl,k,j are

Lipschitz continuous are easily verified for Examples 1 and 2. The choice for the estimator

β̂ is left open to the researcher. Possible choices include using OLS estimates or one-step

efficient estimators (e.g. van der Vaart, 2002, Section 7.2). Our simulation study explores

the finite sample differences between these two estimators.

It follows from Choi, Hall and Schick (1996) that for non-singular information matrices

tests based on Ŝγ̄ are asymptotically uniformly most powerful within the class of rotation

invariant tests. This implies that asymptotically when testing the hypothesis H0 : α = α0,

the power of the test is the greatest possible in the class of rotationally invariant tests. This

makes tests based on Ŝγ̄ attractive for scenarios where there is no explicit direction in which

one want to maximize power. When such directions are given alternative test statistics,

also based on the efficient score function, can be considered (e.g. Bickel, Ritov and Stoker,

2006). Uniformity results and minimax optimality results which permit singular information

matrices can be found in Lee (2022) for efficient score tests in general semi-parametric models.

5 Simulation results

In this section we study the finite sample properties of the singularity and identification

robust score test Ŝγ̂. We study the size and power of the test under different data generating

processes and compare its performance to several alternatives that have been proposed in the

literature. We first study the simple model of section (2) after which we consider the general

linear simultaneous equations model (3). The supplementary material provides additional

results.

5.1 Baseline model

We start by drawing independent samples from model (1), which we restate for convenience

Yi = R′εi , i = 1, . . . , n .

We take Yi to be K × 1 and consider K = 2, 3 and K = 5. The sample size is taken

as n = 200, 500 or n = 1000. We fix εi,1 to have a standard Gaussian density and consider

different densities for εi,k, with k = 2, . . . , K. The non-Gaussian densities are either Student’s

t or mixtures of normals taken from Marron and Wand (1992). Figure 3 provides an overview.
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The matrix of interest R = R(α) is orthogonal and parametrized by the Cayley transfor-

mation of a skew-symmetric matrix (e.g. Gouriéroux, Monfort and Renne, 2017):

R(α) = (I − Ω(α))(I + Ω(α))−1 ,

where Ω(α) is a skew-symmetric matrix (i.e. Ω(α)′ = −Ω(α)) parameterized by α which we

sample at random from α ∼ N(0, ILα).

In this setting there are no additional nuisance parameters which allows us to concentrate

on the consequences of weak non-Gaussianity on the efficient score test and some alternative

tests that have been proposed in the literature. In the simulation designs below we include

additional finite dimensional nuisance parameters (i.e. β = (σ, b)) and investigate whether

their inclusion alters the size and power of the test.

For each specification we simulate S = 5, 000 datasets and for each we compute the

efficient score statistic Ŝγ̂ as defined in equation (10) following the Algorithm given in Section

3.12 We implement the log density score estimator (7) using B = 4, 6 or 8 cubic splines.

In Table 2 we show the empirical rejection frequencies corresponding to the Sγ̂ test with

nominal size 0.05. The columns correspond to the different choices for the densities εk for

k ≥ 2.

The first column corresponds to the case where all densities are Gaussian and the expected

likelihood takes the same value for all α ∈ RLα , i.e. α is unidentified. Nonetheless, we find

that the empirical rejection frequency of the score test is always close to the nominal size.

This holds regardless of the sample size n, the dimension of the model K and the number

of cubic splines B.

Second, when the densities for k ≥ 2 are non-Gaussian the size remains correct. Specifi-

cally, columns 2-4 show the results for the case where εi,k follows a Student’s t distribution

with decreasing degrees of freedom (ν = 15, 10, 5). No matter how close we get to the Gaus-

sian density the size remains correct. Columns 5-10 show similarly correct size for a variety

of mixture distributions. Even for complicated skewed bi-modal densities (e.g. columns

8-10) the Sγ̂ test has size close to nominal regardless of the sample size.

Third, overall the number of cubic splines used has little influence on the results. A close

inspection reveals that when the number of cubic splines is equal to four the test becomes

mildly conservative for some densities, therefore we use B = 6 cubic splines in the remaining

exercises.

Overall, the asymptotic approximation in Theorem 1 seems to provide a good approx-

imation for the finite sample behavior of the semiparametric score test, at least for the

12To be specific, since the model does not contain any finite dimensional nuisance parameters step 1 in
the algorithm can be skipped and the score statistic is simply evaluated at α0.
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distributions shown in Figure 3.

5.2 Comparison to alternative approaches

Next, we compare our semiparametric testing approach to different parametric approaches

based on (psuedo) maximum likelihood and the generalized method of moments. We concen-

trate on evaluating different tests based on size and power in the vicinity of Gaussianity.13

Alternative tests

Conceptually, there are two types of alternative tests that we consider: (i) tests that rely

on estimates for α and (ii) tests that fix α = α0 under the null. Clearly, from our intuitive

discussion in Section 2 it follows that we expect tests that fix α under the null to perform

relatively well.

In category (i) we consider the standard maximum likelihood Wald (Wmle) and likelihood

ratio (LRmle) tests based on the Student’s t density for εk. For densities 2-4 in Figure 3 these

tests correspond to exact maximum likelihood tests, with the caveat that when the degrees

of freedom increases the parameters α become weakly identified, or not-identified. For all

other densities these tests are mis-specified.

In addition, we consider the psuedo-maximum likelihood Wald test (Wpmle) from Gouriéroux,

Monfort and Renne (2017). This test is asymptotically valid for a broader range of true dis-

tribution functions and amount to fixing the functional form of the densities η1, . . . , ηK . We

follow the implementation of Gouriéroux, Monfort and Renne (2017) and choose the Stu-

dents t density with five degrees of freedom as the pseudo-likelihood and compute the Wald

statistic based on this density.

Finally, we consider the recently developed GMM method of Lanne and Luoto (2021),

which relies on higher order moments to identify the parameters α. We use Eε2i,kεi,j = 0,

Eε3i,kεi,j = 0 and Eε2i,kε2i,j = 1 as moment conditions for all j 6= k and j, k = 1, . . . , K.

The GMM likelihood ratio test is then computed as the rescaled difference between the

unrestricted and restricted J-statistics, based on the 2-step GMM estimator (LRgmm), see

Lanne and Luoto (2021) for details.14

In category (ii) we consider tests which fix α = α0 under the null. Specifically, we include

the standard LM test (LMmle) based on the Student’s t density where the degrees of freedom

parameter is estimated from the data. Second, we consider the pseudo-maximum likelihood

13The recent simulation studies of Herwartz, Lange and Maxand (2019) and Moneta and Pallante (2020)
provide further simulation evidence for existing methods, also focusing on estimation accuracy.

14Note that lower order moments are not required as the baseline model Yi = R′εi implies that the
observations have mean zero and unit variance.

19



version of the LM test (LMpmle) based on Gouriéroux, Monfort and Renne (2017), which fixes

the degrees of freedom at five. Finally, we consider the GMM-based identification robust

S-statistic (Sgmm) of Stock and Wright (2000), which was recently considered in Drautzburg

and Wright (2021) in the context of structural VAR models with non-Gaussian errors. We

use the same moment conditions as considered in Drautzburg and Wright (2021) for the

LMgmm test.

Size comparison

We compare the size of the different tests for the simulation designs described in Section

5.1. The empirical rejection frequencies are shown in Table 3 for the case where K = 2 and

n = 200, 500, 1000. Overall we find, perhaps not surprisingly, that all tests in category (i) do

not have correct size when the true density is close to Gaussian nor when the corresponding

method is based on a mis-specified model. This shows that tests based on estimates for α

are generally unreliable. Second, tests in category (ii) overall control the size of the test well.

More specifically, we find that the Wald tests (Wmle and Wpmle) tend to over-reject quite

severely whilst the standard likelihood ratio test (LRmle) tends to be undersized for most

densities, especially in the vicinity of the Gaussian density, as ought to be expected given

the earlier evidence in shown in Figure 1. Finally, the GMM likelihood ratio test (LRgmm)

is also over-sized, which confirms findings in Lanne and Luoto (2021) where the LRgmm also

over-rejects when the densities of the structural shocks are close to Gaussian.

In the second category the semi-parametric score test Ŝγ̂ (as proposed in this paper)

and the pseudo maximum likelihood LM test (LMpmle), inspired by Gouriéroux, Monfort

and Renne (2017), both have near perfect size across all densities. The standard LM test

(LMmle) also performs reasonably well, but when the functional form of the true densities is

very different from the Student’s t density (e.g. separate bi-modal, column 9) the test tends

to under-reject.15 Finally, the GMM based robust S test (Sgmm) tends to be over-sized for

small samples, but for large samples it generally shows correct size except for densities with

moderately heavy tails such as the t(5) density (column 4). In these cases the Sgmm is over-

sized which can be understood when realizing that the GMM approach requires eight finite

moments for inference when based on fourth-order moment restrictions. The t(5) density

does not have eight finite moments.

In sum, we recommend avoiding statistics that are based on estimates for α as these are

overall unreliable when the shock distributions are close to Gaussian. All tests that fix α

under the null perform at least reasonably well. In the next section we compare these tests

based on their finite sample power.

15Recall here that this test is based on a misspecified density.
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Power comparison

We compare the power of all tests that fix α under the null, that is Ŝγ, LMmle, LMpmle and

Sgmm.

We consider the case where K = 2 and n = 1000.16 In this setting α is a scalar parameter

and we fixed the true value at 0 (an arbitrary choice). Figure 4 shows the empirical rejection

frequencies when we vary α around α = 0. Each point on the curve is based on S = 5, 000

simulations.

Two main findings stand out. First, for the Student’s t densities t(15), t(10) and t(5)

(panels 2-4) the standard LM test (LMmle) shows the highest power. This is not surprising

as for these data generating processes the LMmle test is correctly specified and hence takes

advantage of fitting the true densities using only a scalar parameter. That said, the semi-

parametric score test (Ŝγ̂) and the pseudo maximum likelihood LM test (LMpmle) come

reasonably close in terms of power.

Second, for all other densities, i.e. different mixtures of normals in panels 5 – 10, the semi-

parametric score test (Ŝγ̂) shows the highest power. Sometimes the difference with the other

tests is not very large, but for instance for bi-modal densities (panels 8-10) the differences are

substantial. Overall, the good power of the Ŝγ̂ test corresponds to the theoretical finding that

for non-singular information matrices the test is asymptotically uniformly most powerful in

the class of unbiased tests.17

Besides the Ŝγ̂ test, we note that the pseudo maximum likelihood LM test and the GMM

based S test shows quite promising power for most of the densities considered. None of these

dominates the other. The caveat for the GMM test is that it is size-distorted for moderately

heavy tails (panel 4).

5.3 Linear simultaneous equations model

Next, we discuss the simulation results for the general linear simultaneous equations model

(3). The dimensions of the design are similar as above with the addition that we consider

d = 2, 3 for the number of covariates. We now parametrize A(α, σ)−1 = Σ1/2(β1)R(α) as in

example 1, where Σ1/2 is lower triangular and the rotation matrix R remains to be specified

by the Cayley transform. The explanatory variables are drawn from the standard normal

distribution.

The vector of finite dimensional nuisance parameters β now includes σ = vech(Σ1/2) and

b = vec(B). Our main theoretical result in Theorem 1 shows that β can be approximated by

16Power comparisons for different n can be found in the supplementary material.
17Cf. Choi, Hall and Schick (1996).
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any
√
n-consistent estimate. Obviously, ordinary least squares estimates are attractive for

their simplicity, but given the non-normality of the structural shocks these estimates may

be improved. Therefore we also consider estimating β by one-step-efficient estimates (e.g.

van der Vaart, 2002, Section 7.2), which are easy to compute here since the efficient score of

β is computed anyway to construct the score test.

Similar, as before the first error εi,1 follows a Gaussian distribution and the different

densities from Figure 3 are assigned to the other error terms. For each specification we

simulate S = 5, 000 datasets and for each sample we compute the semi-parametric score

statistic using the Algorithm in Section 3.

Size results

The empirical rejection frequencies are shown in Tables 4 and 5 for the OLS and one-step

efficient estimates for β, respectively.

We find that for all the rejection frequencies of the Ŝγ̂ test are generally close to the nom-

inal size. That said, there is more variation in the empirical rejection frequencies compared

to Table 2, indicating that the estimation of the finite dimensional nuisance parameters does

have consequences.

Starting with Table 4 where β̂ is estimated by OLS. We find that the size of Ŝγ̂ is the

same regardless of how close the densities of εi,k are to the Gaussian density. Specifically,

moving from columns 1-4 (i.e. from Gaussian to t(5)) we see virtually no changes in the

rejection frequencies. This holds for all specifications considered and highlights the main

point of this paper: the semi-parametric score test yields reliable inference even when α is

not, or poorly, identified.

Depending on the dimension of β we do find size distortions for small sample sizes, most

notably when K = 5 and n = 200. In this setting β is of dimension 20 or 25 depending on

d = 2, 3, and we see that the test is often over-sized. This does not hold for all densities

considered, but for Gaussian, Student’s t and kurtotic unimodal densities the test over-

rejects. When n increases the over-rejection vanishes and the test appears correctly sized.

For the one-step efficient estimator for β the results are shown in Table 5. We find that on

average the empirical rejection frequencies are larger when compared to the OLS estimator.

Notably, when n is small over-rejection becomes more severe. Again, we find that this holds

uniformly across densities, i.e. distortions do no depend on being close to Gaussian, and the

sizes improve when n increases.
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Power results

Next, we investigate the power of the Ŝγ̂ test for the LSEM model. We again consider the

case where K = 2, d = 2 and n = 1000, which allows us to compare the results with those

for the baseline model. The power curves are shown in Figure 5 for both OLS and one-step

estimates for β.

First, when comparing Figure 5 to the case without nuisance parameters (i.e. Figure 4)

we find that the power of the test is reduced when we include nuisance parameters. Second,

the power of the test using the one-step efficient estimates (dotted blue line) is higher when

compared to the same test evaluated at OLS estimates. This holds for all densities considered.

Based on these results we recommend using OLS estimates for β when the sample size

is small (e.g. n = 200, 500), but for larger sample sizes the one-step efficient estimates are

preferable.

6 Testing production function coefficients

In this section we explore whether non-Gaussian distributions can help to identify the co-

efficients in the production function of a firm. Fittingly, the very first contributions in this

literature highlighted the identification problem in this setting using simultaneous equations

(e.g. Marschak and Andrews, 1944; Hoch, 1958). This generated a large number of works

that aim to address the simultaneity problem in different ways. Prominent examples include

using panel data methods (e.g. Arellano and Bond, 1991; Blundell and Bond, 1998) or proxy

variable methods (e.g. Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg, Caves

and Frazer, 2015).

To study how non-Gaussian distributions may assist in the quest for identification we

consider the baseline Cobb-Douglas production function

Oi = ec1Lα1
i K

α2
i eεi,1 ,

where Oi, Li, Ki denote output, labor and capital, respectively, and εi,1 captures unobserved

factors that determine output. Our interest is in the coefficients α1 and α2 that determine the

contributions of labor and capital to output. The, well known, difficulty for learning about

α1 and α2 is that the inputs Li, Ki are typically choice variables of the firm. Allocations are

made to maximize profits and hence will generally depend on unobservables εi,1.

To address this simultaneity problem we consider a simultaneous equations approach that

allows for correlation among Li, Ki, ε1, and exploits possible non-Gaussianity in the errors

to identify the parameters α1 and α2.
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To be specific, the models that we consider are defined for Yi = (logOi, logLi, logKi)
′,

and are of the form

S(α, σ)Yi = BXi +D(σ)εi , (13)

where Xi includes a constant and any other additional exogenous variables such as the age

of the firm. We adopt the following specification for the matrices S and D.

S(α, σ) =

 1 −α1 −α2

−σ1 1 −α3

−σ2 −σ3 1

 and D(σ) =

 σ4 0 0

0 σ5 0

0 0 σ6

 .

We note that parameters in σ can be recovered from the variance of Yi − BXi and we will

simultaneously test α = α0, where α = (α1, α2, α3)′, for different choices of α0 to obtain the

confidence sets. The positioning of α3 is arbitrary in our setting as it is not a parameter of

interest, but it can also not be identified from the variance alone. The confidence sets for

α1 and α2 that we report are obtained by taking the minimum and maximum values for α1

and α2 that are not rejected by the score test.18 Finally, to pin down the desired rotation

we impose that α1 and α2 are positive and the correlations between Li, Ki and εi,1 are non-

negative. In other words, positive shocks to output do not decrease labor and capital, a mild

sign restriction that corresponds with most economic models (e.g. Hoch, 1958).

We use a sample of 115, 000 manufacturing firms that are observed from 2000 until 2017.19

We perform two exercises. First, to illustrate our methodology we consider the cross section

of firms that exist in 2017 and investigate in detail the output of the methodology. Second,

we repeat the exercise for different years and assess the changes in α1 and α2 over time.

Results

We first illustrate the methodology using the manufacturing firms that existed in 2017. We

have n = 1247 firms with observations for output, labor and capital. We consider model

(13) with a constant and possibly the age of the firm as a control variable (e.g. Olley and

Pakes, 1996).

The 95% confidence bounds for the production function coefficients α1 (labor) and α2

(capital) are shown in Table 6. We find that these coefficients are generally well identified

empirically. In particular, with 95% confidence, α1 lies between 0.41 and 0.68, while α2 lies

between 0.27 and 0.50, for all choices of the control variables. The joint confidence region

18We note that this projection approach is conservative and refinements along the lines of Kaido, Molinari
and Stoye (2019) may improve the current findings.

19The data are obtained from CompuStat.
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for (α1, α2) is shown in the top left panel of Figure 6. It shows that we cannot reject that

α1 + α2 = 1 as the confidence region exactly lies on this line.

To understand where the identification in the LSEM is coming from, the other panels in

Figure 6 show the empirical densities of the residuals ε̂i = Â(Zi−B̂Xi), where Â corresponds

to the choice for α that minimizes the score statistic. We find that the empirical densities

are indeed different from the normal density, notably for the first density. Overall, we can

reject the null hypothesis that the errors are normally distributed for the first and second

errors using a Jarque-Bera test. For the third error we cannot reject normality.

Given our simulation results such mild deviations from Gaussianity may cause prob-

lems for standard inference methods. This is true for the alternative methods that which

were found not robust to weak deviations from Gaussianity; they tend to give much smaller

confidence bands. This suggests that whilst non-Gaussianity may be a useful tool for iden-

tification, robust methods need to be adopted for the approach to be used reliably. We

emphasize that besides the sign restrictions that ensure that the correlations between L,K

and ε1 are non-negative no further structural assumptions or instruments are needed.

Table 6 also reports the baseline OLS estimates as obtained by regressing log output on

the controls and log labor and log capital. We find that these estimates are very different

and the confidence intervals do not overlap with those of the LSEM. This highlights that

there may indeed be endogeneity in the form of correlation between labor, capital and the

error term εi,1.

To verify whether this conclusion is justified we need to test whether the underlying

assumption regarding the independence of the underlying structural shocks is indeed true

(e.g. Montiel Olea, Plagborg-Møller and Qian, 2022). To do so, we adopt the permutation

test for independent components as proposed in Matteson and Tsay (2017). We implement

their test on the sample {ε̂i} as defined above.20 The results are shown in the bottom row of

Table 6. Depending on whether age is included as a control variable, the p-values are 0.12

and 0.16 indicating that there is not substantial evidence against independence.

Next, to highlight that the year 2017 was in no way exceptional we repeat the previous

exercise for the years 2000-2017. The results for the model that includes age as a control

variable are shown in Figure 7. Overall, the findings are very stable. We do notice a modest

decline in the labor input coefficient and an increase of the coefficient on capital towards the

end of the sample.

20The test was implemented using the R package steadyICA using the function permTest.
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7 Conclusion

In this paper we highlighted a weak identification problem that arises when non-Gaussianity

is used to identify coefficients in LSEMs. The consequence of this problem is that several

existing inference methods suffer from size distortions when the true distributions are close

to Gaussian.

To remedy this problem we proposed an identification robust semi-parametric score statis-

tic for testing hypotheses in LSEMs. Under mild regularity conditions we showed that the

score test retains correct asymptotic size regardless of the shape of the true density functions.

A simulation study shows that our asymptotic theory provides an accurate approximation

to the finite sample performance of our test.

While we have restricted our treatment to models where the observations were indepen-

dently distributed across entities, we note that a similar approach may be considered for

dynamic models, but this will require extending our results to allow for non-i.i.d. data. Sim-

ilarly, dynamic panel data models could be considered pending a novel strategy for handling

the initial conditions. These extensions are left for future work.
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Appendix

In this appendix we provide the proof for Theorem 1. The proof is structured as follows.
We first provide a general approach for conducting identification and singularity robust
hypothesis tests in semiparametric models. This general theory is subsequently applied to
prove Theorem 1.

Throughout the appendix we often use the empirical process notation: Pf = Ef(Xi),
Pnf = 1

n

∑n
i=1 f(Yi) and Gnf =

√
n(Pn − P )f . Further, Gk denotes the law on R corre-

sponding to ηk and εk is distributed according to Gk. Similarly G0 denotes the law on Rd−1

corresponding to η0 and X̃ is distributed according to G0.

A: General theory

We expound a general approach for conducting identification robust hypothesis tests in semi-
parametric models. The LSEM model of Section 3 constitutes as a special case of the model
considered in this section.

Let Y ∈ Y ⊂ RK by a random vector defined on some underlying probability space
(Ω,F ,P) with its distribution on Y specified by the law Pθ0 that depends on parameters
θ0 ∈ Θ. The parameter space Θ has the form Θ = A×B×H, where A ⊂ RLα , B ⊂ RLβ and
H a metric space. We write a typical element of Θ as θ = (α, β, η), where it is understood
that α ∈ A, β ∈ B and η ∈ H.

The model that the researcher considers is the collection

PΘ = {Pθ : θ ∈ Θ} , (14)

where each Pθ � µ for some σ-finite measure µ on Y . We define γ = (α, β) and Γ = A×B,
which implies that Γ ⊂ RL with L = Lα + Lβ, and Pθ = P(γ,η).

In general, we assume that the nuisance parameters β and η do not suffer from identifi-
cation problems, but α may. In particular, for different points β ∈ B and η ∈ H the vector
α may be strongly identified, weakly identified or completely unidentified. To conduct in-
ference on α without making a priori assumptions on the identification of α we consider
hypothesis tests of the form

H0 : α = α0 , β ∈ B , η ∈ H against H1 : α 6= α0 , β ∈ B , η ∈ H . (15)

To derive our tests, we first define the scores of model (14) following the definition in van der
Vaart (2002).

Definition 1 (Cf. Definition 1.6 in van der Vaart, 2002). A differentiable path is a map
t 7→ Pt from a neighborhood of 0 ∈ [0,∞) to PΘ such that for some measurable function
s : Y → R, ∫ [√

pt −
√
p

t
− 1

2
s
√
p

]2

dµ→ 0 , (16)

where pt and p respectively denote the densities of Pt and P relative to µ. The map t→ √pt
is the root density path and s is the score function of the submodel {Pt : t ≥ 0} at t = 0.
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In words we say that a differentiable path is a parametric submodel {Pt : 0 ≤ t < ε} that
is differentiable in quadratic mean at t = 0 with score function s. If we let t 7→ Pt range
over a collection of submodels, indexed by V , we will obtain a collection of score functions,
say si for i ∈ V . This collection, {si : i ∈ V}, will be denoted by TP,V and as we only
consider models with linear spaces we refer to it as a tangent space. For the semiparametric
model (14) we define tangent spaces along restricted paths concerning the two parts of the
parameter θ = (γ, η) separately.

Assumption 3. The map t 7→ Pγ+tg,ηt(γ,η,h) is a differentiable path for each (g, h) ∈ RL ×
H =: J . The tangent space TPθ,J has the form

TPθ,J = T γ|η
Pθ,RL

+ T η|γPθ,H
, (17)

where T γ|η
Pθ,RL

= {g′ ˙̀θ : g ∈ RL}, for ˙̀
θ a L-vector of measurable functions from Y → R, is

the tangent space for γ and T η|γPθ,H
is the tangent space for η.

The assumption defines the tangent spaces for the semiparametric model (14) and im-
poses that the tangent space of the complete model is the sum of the tangent spaces of the
parametric and non-parametric parts of the model. The assumption is mild and can typi-
cally be satisfied by imposing that the square root of the density function is continuously
differentiable almost everywhere with respect to the parameters θ.21

For the parametric part of the model we note that ˙̀
θ is simply the L × 1 vector of

scores of γ evaluated at θ = (γ, η), and the tangent space of γ is simply the span of ˙̀
θ, i.e.

T γ|η
Pθ,RL

= {g′ ˙̀θ : g ∈ RL}. The tangent space of the non-parametric part, i.e. T η|γPθ,H
, is formed

by scores corresponding to paths of the form t 7→ P(γ,ηt(γ,η,h)) for h ∈ H, where the choice
for ηt(γ, η, h) depends on η such that ηt(γ, η, h)|t=0 = η.

Having defined the tangent spaces of γ and η, let Πθ be the orthogonal projection from
L2(Pθ) onto the closure of T η|γPθ,H

, i.e. cl T η|γPθ,H
. The efficient score function for γ is defined as

(e.g. Definition 2.15 in van der Vaart, 2002)

˜̀
θ := ˙̀

θ − Πθ
˙̀
θ , (18)

where the projection is understood to apply componentwise. The accompanying efficient
information matrix for γ is given by

Ĩθ := Eθ ˜̀
θ
˜̀′
θ . (19)

When η is finite dimensional the efficient score is equivalent to the population residual of
the regression of ˙̀

θ on the scores of η and the efficient information matrix is the variance of
this residual (e.g. Neyman, 1979; Choi, Hall and Schick, 1996).

To obtain the efficient score function for α which is the part of γ = (α, β) that is of

21 See e.g. Lemma 7.6 in van der Vaart (1998), Lemma 1.8 in van der Vaart (2002) or Proposition 2.1.1
in Bickel et al. (1998).
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interest, note that the previous two displays imply the partitioning

˜̀
θ =

(
˜̀′
θ,α,

˜̀′
θ,β

)′
and Ĩθ =

[
Ĩθ,αα Ĩθ,αβ
Ĩθ,βα Ĩθ,ββ

]
. (20)

If Ĩθ,ββ is nonsingular,22 we can (orthogonally) project once more to obtain the efficient score
function for α:

κ̃θ := ˜̀
θ,α − Ĩθ,αβ Ĩ−1

θ,ββ
˜̀
θ,β , (21)

which has corresponding efficient information matrix

Ĩθ := Ĩθ,αα − Ĩθ,αβ Ĩ−1
θ,ββ Ĩθ,βα . (22)

Building tests or estimators based on the efficient score function κ̃θ is attractive as efficiency
results are well established, see Choi, Hall and Schick (1996), Bickel et al. (1998) and van der
Vaart (2002).

It follows from (18) and Lemma 1.7 in van der Vaart (2002) that at θ0 = (α0, β, η), where
β ∈ B and η ∈ H, we have

Eθ0κ̃θ0 = 0 . (23)

To construct test statistics we assume that we observe n independent and identically dis-
tributed copies of the vector Y that are denoted by {Yi}ni=1. These observations satisfy the
following high level assumption.

Assumption 4. Let γ0 = (α0, β) and θ0 = (α0, β, η) for any (β, η) ∈ B ×H. Additionally,
let γn = {(α0, βn)}n∈N be a deterministic sequence such that

√
n(γn − γ0) = O(1) and define

θn = (γn, η) for each n ∈ N. Suppose that

1. 1√
n

∑n
i=1

˜̀
θ0(Yi) Z ∼ N (0, Ĩθ0) under Pθ0 where Ĩθ0,ββ is nonsingular

2. We have an array of estimates {ˆ̀γn(Yi)}n≥1,i≤n such that:

1

n

n∑
i=1

(
ˆ̀
γn(Yi)− ˜̀

θn(Yi)
)

= oPθn (n−1/2)

3. For some sequence of estimates {Îγn}n≥1 and some sequence {νn}n≥1 with 0 ≤ νn → 0

‖Îγn − Ĩθ0‖2 = oPθn (νn)

4. We have that ∫ ∥∥∥˜̀
θnp

1/2
θn
− ˜̀

θ0p
1/2
θ0

∥∥∥2

dµ→ 0.

22 If Ĩθ,ββ is singular, we may drop components from ˜̀
θ,β until the remaining components form a linearly

independent collection which span the same subspace of L2(Pθ) as ˜̀
θ,β . The corresponding variance matrix

of this smaller vector will be non-singular and ˜̀
θ,β can be replaced throughout by this smaller vector.
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We note that the estimates for the efficient scores ˆ̀
γn(Yi) and information matrix Îγn no

longer depend on η, hence they are only indexed by γn. Based on Assumption 4-parts 2 and
3 we define the following estimators for the efficient score and information matrix for α:

κ̂γ := ˆ̀
γ,α − Îγ,αβ Î−1

γ,ββ
ˆ̀
γ,β , and Îγ := Îγ,αα − Îγ,αβ Î−1

γ,ββ Îγ,βα . (24)

Given νn from Assumption 4-part 3, we define a truncated eigenvalue version of the infor-
mation matrix estimate as

Îtγ = ÛnΛ̂n(νn)Û ′n , (25)

where Λ̂n(νn) is a diagonal matrix with the νn-truncated eigenvalues of Îγ on the main

diagonal and Ûn is the matrix of corresponding orthonormal eigenvectors. To be specific, let
{λ̂n,i}Li=1 denote the non-increasing eigenvalues of Îγ, then the (i, i)th element of Λ̂n(νn) is

given by λ̂n,i1(λ̂n,i ≥ νn).
Based on this we define the singularity and identification robust score statistic as a

function of γ = (α, β) as follows.

Ŝγ :=

(
1√
n

n∑
i=1

κ̂γ(Yi)

)′
Ît,†γ

(
1√
n

n∑
i=1

κ̂γ(Yi)

)
. (26)

where Ît,†γ is the Moore-Penrose psuedo-inverse of Îtγ. The following theorem implies that

we can use the estimated rank of Îtγ to compute the critical value for Ŝγ.

Theorem 2. Let γ0 = (α0, β) for any β ∈ B. Suppose that β̂n is a
√
n-consistent estimator

of β under Pθ0. Let Bn = n−1/2CZLβ for some C > 0 and let β̄n be a discretised version of
β̂n which replaces its value with the closest point in Bn. Suppose assumptions 3 and 4 hold
and let γ̄n = (α0, β̄n). Let rn = rank(Îtγ̄n) and denote by cn the 1 − a quantile of the χ2

rn

distribution for any a ∈ (0, 1).23 Then

lim
n→∞

Pθ0

(
Ŝγ̄n > cn

)
≤ a,

with inequality only if rank(Ĩγ0) = 0.

The proof for Theorem 2 is given below. This theorem provides the main building block
for the proof of Theorem 1 for the LSEM model.

B: Proof of Theorem 1

We note that the LSEM model (3) can be viewed as a semi-parametric model defined by

PΘ := {Pθ : θ ∈ Θ} (27)

23If rn = 0 we take cn = 0.
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where Θ = A × B × H, with A ⊂ RLα , B ⊂ RLβ and H = Z ×
∏K

k=1 H , where Z is the
space of density functions η0 with X̃i ∼ η0 and H is the space of density functions ηk, i.e.

H :=

{
g ∈ L1(λ) ∩ C1(λ) : g(z) ≥ 0,

∫
g(z) dz = 1,

∫
zg(z)dz = 0,

∫
κ(z)g(z) dz = 0,∫

|z|4+δg(z) dz <∞,
∫
|(g′(z)/g(z))|4+δ

g(z) dz <∞,∫
z4g(z) dz > 1 +

[∫
z3g(z) dz

]2
}
,

where λ denotes Lebesgue measure on R, C1(λ) is the class of real functions on R which are
continuously differentiable λ-a.e. and κ(z) = z2 − 1. We denote by H0 ⊂ H the set with
elements η = (η0, . . . , ηK) such that each ηk satisfies the requirements imposed by assumption
1. Finally, Pθ is the law on Y × X , with Yi ∈ Y ⊂ RK and X̃i ∈ X ⊂ Rd−1, defined by the
density

pθ(y, x̃) := | detA|
K∏
k=1

ηk(Ak•y)× η0(x̃) , (28)

where Ak• denotes the kth row of A = A(α, σ).
With these formalities established we give three useful lemmas whose proofs are deferred

to the web-appendix. The first lemma defines the tangent spaces for the LSEM and effectively
ensures that the LSEM model satisfies the high-level assumption 3 in the general theory.

Lemma 1. Given Assumption 1, if (α, σ) 7→ A(α, σ) is continuously differentiable, we have
that for any θ ∈ Θ there is a δ > 0 small enough such that the path t 7→ Pθt(θ,g,h) from

[0, δ) to (a subset of) PΘ is a differentiable path with score function y 7→ g′ ˙̀θ(y, x̃) +h0(x̃) +∑K
k=1 hk(Ak•v), where v = y −Bx. In particular,

TPθ,J =

{
y 7→ g′ ˙̀θ(y, x̃) + h0(x̃) +

K∑
k=1

hk(Ak•v) : g ∈ RL, h ∈ H

}
= T γ|η

Pθ,RL
+ T η|γPθ,H

,

and TPθ,J is a tangent space to the model at Pθ.

The next lemma presents the efficient score functions (18) for the LSEM model.

Lemma 2. Given Assumption 1, if (α, σ) 7→ A(α, σ) is continuously differentiable, the
components of the efficient score function ˜̀

θ for the semiparametric linear simultaneous
equations model PΘ in (27) at any θ = (γ, η) with γ = (α, β), α ∈ A, β = (σ, b) ∈ B and
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η ∈ H0 are given by

˜̀
θ,αl(y, x̃) =

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,jφk(Ak•v)Aj•v +
K∑
k=1

ζαl,k,k [τk,1Ak•v + τk,2κ(Ak•v)]

˜̀
θ,σl(y, x̃) =

K∑
k=1

K∑
j=1,j 6=k

ζσl,k,jφk(Ak•v)Aj•v +
K∑
k=1

ζσl,k,k [τk,1Ak•v + τk,2κ(Ak•v)]

˜̀
θ,bl(y, x̃) =

K∑
k=1

[−Ak•Db,l] [(x− Ex)φk(Ak•v)− Ex (ςk,1Ak•v + ςk,2κ(Ak•v))]

with v = y−Bx, x = (1, x̃′)′, ζαl,k,j := [Dα,l]k•A
−1
•j , ζσl,k,j := [Dσ,l]k•A

−1
•j , Dα,l = ∂A(α, σ)/∂αl,

Dσ,l = ∂A(α, σ)/∂σl and Db,l = ∂B/∂bl. Further,

τk := M−1
k

(
0
−2

)
, ςk := M−1

k

(
1
0

)
, where Mk :=

(
1 Eθ(Ak•v)3

Eθ(Ak•v)3 Eθ(Ak•v)4 − 1

)
.

The proof of this lemma follows from Amari and Cardoso (1997) for ˜̀
θ,αl(y, x̃) and

˜̀
θ,σl(y, x̃), and for ˜̀

θ,bl(y, x̃) the derivations are similar to those found in, for example, Bickel
et al. (1998) or Newey (1990).

The final lemma summarizes which conditions a log density score estimator should satisfy.
We will apply this lemma for different choices of Wi,n to verify our main result.

Lemma 3. Given assumptions 1 and 2, let {βn}n≥1 be any deterministic sequence in B with√
n(βn−β) = O(1) and let θn = (α0, βn, η) for some η ∈ H0. The log density score estimates

φ̂k defined in (7) satisfy

1

n

n∑
i=1

[
φ̂k(An,k•(Yi −BnXi))− φk(An,k•(Yi −BnXi))

]
Wi,n = oPθn (n−1/2), (29)

and
1

n

n∑
i=1

([
φ̂k(An,k•(Yi −BnXi))− φk(An,k•(Yi −BnXi))

]
Wi,n

)2

= oPθn (νn). (30)

where {Wi,n}n≥1,i≤n is such that for each n ∈ N, under Pθn, the Wi,n are i.i.d. with marginal
distribution given by Gw, with zero-mean, finite second moments and independent of each
An,kYj.

Proof of Theorem 1. We verify assumptions 3 and 4 for the LSEM under Assumptions 1 and
2.

First, the technical assumption 3 is verified in Lemma 1, as given above. Next, we verify
each part of Assumption 4 separately. First, we note that assumption 4-part 1 follows by
the CLT since our data is iid and the efficient score ˜̀

θ0 as derived in Lemma 2 lies in L2(P0)
by construction. Next, let θn = (α0, βn, η) and note that under Pθn , each An,k(Yi−BnXi) '
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εi,k ∼ ηk where An = A(α0, σn) and An,k denotes the kth row of An. Hence we can compute
certain properties of the efficient score using the equality in distribution:

˜̀
θn,αl(Yi, X̃i) '

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,j,nφk(εi,k)εi,j +
K∑
k=1

ζαl,k,k,n [τk,1εi,k + τk,2κ(εi,k)] (31)

˜̀
θn,σl(Yi, X̃i) '

K∑
k=1

K∑
j=1,j 6=k

ζσl,k,j,nφk(εi,k)εi,j +
K∑
k=1

ζσl,k,k,n [τk,1εi,k + τk,2κ(εi,k)] (32)

˜̀
θn,bl(Yi, X̃i) '

K∑
k=1

[−An,k•Dbl ] [(Xi − EXi)φk(εi,k)− EXi (ςk,1εi,k + ςk,2κ(εi,k))] (33)

where we note that the same observation implies that τk,n = τk and ςk,n = ςk for each
n.24 By our assumptions on the map (α, σ) 7→ A(α, σ), we have ζαl,k,j,n → ζαl,k,j,∞ :=

[Dα,l(γ0)]k•A(γ0)−1
•j and ζσl,k,j,n → ζαl,k,j,∞ := [Dσ,l(γ0)]k•A(γ0)−1

•j for γ = (α0, β). Note that
the entries of Db,l are all zero except for entry l (corresponding to bl) which is equal to one.

We verify assumption 4-part 2 for each component of the efficient score (31)-(33), but we
note that (31) and (32) are identical hence we concentrate on (31). For (31) and vn = y−Bnx,
we define

ϕ1,n(vn) :=
K∑
k=1

K∑
j=1,j 6=k

ζαl,k,j,nφk(An,k•vn)An,j•vn ,

and

ϕ̂1,n(vn) :=
K∑
k=1

K∑
j=1,j 6=k

ζαl,k,j,nφ̂k(An,k•vn)An,j•vn ,

Let ζ
α

n := maxl∈[L],j∈[K],k∈[K] |ζαl,j,k,n| which converges to ζ
α

:= maxl∈[L],j∈[K],k∈[K] |ζαl,j,k,∞| <
∞. We have that

√
nPn(ϕ̂1,n − ϕ1,n) ≤

√
n

K∑
k=1

K∑
j=1,j 6=k

ζ
α

n

∣∣∣∣∣ 1n
n∑
i=1

φ̂k(Vi,k,n)Vi,j,n − φk(Vi,k,n)Vi,j,n

∣∣∣∣∣ ,
with Vi,j,n = An,j•(Zi − BnXi). Since each

∣∣∣ 1
n

∑n
i=1 φ̂k,n(Vi,k,n)Vi,j,n − φk(Vi,k,n)Vi,j,n

∣∣∣ =

oPθn (n−1/2) by applying Lemma 3-part (29) with Wi,n = Vi,j,n (noting that under Pθn ,
Vi,k,n ' εk,i and Vi,j,n ' εj,i are independent with EθnV 2

i,j,n = 1 by Assumption 1) and
the outside summations are finite, it follows that

√
nPn(ϕ̂1,n − ϕ1,n) = oPθn (1). (34)

Next, we note that τ̂k,n − τk → 0 and ς̂k,n − ςk → 0 in Pθn-probability by Lemma 7 where
τ̂k,n and ς̂k,n are defined in (6).

24In the preceding display we have written ζαl,k,j,n and ζσl,k,j,n rather than ζαl,k,j and ζσl,k,j to indicate their
dependence on βn. ζαl,k,j,∞ and ζσl,k,j,∞ corresponds to evaluation at the point (α0, β).
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Now, consider ϕ2,τ,n(vn) defined by

ϕ2,τ,n(vn) :=
K∑
k=1

ζαl,k,k,n [τk,1An,k•vn + τk,2κ(An,k•vn)] .

Since sum is finite and each |ζαl,k,k,n| → |ζαl,k,k,∞| < ∞ it is sufficient to consider the conver-
gence of the summands. In particular we have that

1√
n

n∑
i=1

[τ̂k,n,1 − τk,1]Vi,k,n = [τ̂k,n,1 − τk,1]
1√
n

n∑
i=1

Vi,k,n = oPθn (1)×OPθn
(1) = oPθn (1),

1√
n

n∑
i=1

[τ̂k,n,2 − τk,2]κ(Vi,k,n) = [τ̂k,n,2 − τk,2]
1√
n

n∑
i=1

κ(Vi,k,n) = oPθn (1)×OPθn
(1) = oPθn (1).

since Vi,k,n ' εk,i ∼ ηk under Pθn and (εi,k)i≥1 and (κ(εi,k))i≥1 are i.i.d. mean-zero sequences
with finite second moments such that the CLT holds. Together these yield that

√
nPn(ϕ2,τ̂n,n − ϕ2,τ,n) = oPθn (1). (35)

Putting (34) and (35) together yields the required convergence for components of the type
(31) , since ˜̀

θn,αl = ϕ1,n +ϕ2,τ,n and ˆ̀
γn,αl = ϕ̂1,n +ϕ2,τ̂n,n. The same holds for (32); the only

difference is that we replace ζαl,k,k,n by ζσl,k,k,n
Next, we consider components (33). Let an,k,l := −An,k•Db,l and write

√
nPn

[
ˆ̀
γn,b,l − ˜̀

θn,b,l

]
=

K∑
k=1

an,k,l
√
nPn

[
(Xi − EXi)[φ̂k(Vi,k,n)− φk(Vi,k,n)] + (EXi − X̄n)φk(Vi,k,n)

]

+
K∑
k=1

an,k,l
√
nPn

[
(EXi − X̄n)[ς̂k,n,1Vi,k,n + ς̂k,n,2κ(Vi,k,n)]

]

−
K∑
k=1

an,k,l
√
nPn

[
EXi[(ς̂k,n,1 − ςk,1)Vi,k,n + (ς̂k,n,2 − ςk,2)κ(Vi,k,n)]

]
Taking the right hand side terms (inside the outer summation) in order, we have that√
nPn(Xi−EXi)[φ̂k(Vi,k,n)−φk(Vi,k,n)] = oPθn (1) by Lemma 3-part (29) applied with Wi,n =

Xi − EXi. For the second,
√
nPn(EXi − X̄n)φk(Vi,k,n) = (EXi − X̄n)

√
nPnφk(Vi,k,n) =

oPθn (1)×OPθn
(1) = oPθn (1) by the WLLN & CLT, noting for the latter that Vi,k,n ' εi,k. We

know from Lemma 7 that ςk,n
Pθn−−→ ςk and hence adding & subtracting and using the WLLN

& CLT again yields that
√
nPn(EXi− X̄n)[ς̂k,n,1Vi,k,n + ς̂k,n,2κ(Vi,k,n)] = oPθn (1). The CLT &

ςk,n
Pθn−−→ ςk ensure that

√
nPn[(ς̂k,n,1 − ςk,1)Vi,k,n + (ς̂k,n,2 − ςk,2)κ(Vi,k,n)] = oPθn (1). Together

these observations and that an,k,l → a∞,n,l := Ak•Db,l imply that the required condition,
√
nPn

[
ˆ̀
γn,b,l − ˜̀

θn,b,l

]
= oPθn (1), is satisfied.
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To verify part 3 we will show that∥∥∥Îγn − Ĩθ0∥∥∥
2
≤
∥∥∥Îγn − Ĩθn∥∥∥

2
+
∥∥∥Ĩθn − Ĩθ0∥∥∥

2
= oPθn (ν1/2

n ). (36)

where Ĩθn := 1
n

∑n
i=1

˜̀
θn(Yi)˜̀

θn(Yi)
′. To obtain the rates we start with ‖Ĩθn − Ĩθ0‖2, for

which we show that each component satisfies the required rate. To set this up, let Qr,s
l,m,i,n =

˜̀
θn,rl(Yi)

˜̀
θn,sm(Yi)− ˜̀

θ0,rl(Yi)
˜̀
θ0,sm(Yi), where r, s ∈ {α, σ, b} and l,m denote the indices of the

components of the efficient scores. Let Q̆r,s
l,m,i,n be defined analogously with Vi,k,n replaced by

εi,k. Under Pθn we have that Qr,s
l,m,i,n ' Q̆r,s

l,m,i,n. Therefore to show [Ĩθn − Ĩθ0 ]l,m = oPθn (ν
1/2
n )

it suffices to show that for any r, s and l,m

1

n

n∑
i=1

Q̆r,s
l,m,i,n −GQ̆

r,s
l,m,i,n +

1

n

n∑
i=1

G[Q̆r,s
l,m,i,n − Q̆

r,s
l,m,i,∞] = oG(ν1/2

n ),

where G is the product measure
∏K

k=0Gk and each Q̆r,s
l,m,i,n is shown to satisfy ‖Q̆r,s

l,m,i,n‖G,p <
∞ in Lemma 6 given below. The convergence of the second term follows from the assumed
Lipschitz continuity of the map defining the ζ’s and the

√
n-consistency of βn for β, since

n−1/2 = o(ν
1/2
n ).25 For the first term, if p = 2 in lemma 6, by Theorem 2.5.11 in Durrett

(2019), we have that for all ι > 0

1

n

n∑
i=1

Q̆r,s
l,m,i,n −GQ̆

r,s
l,m,i,n = oG

(
n−1/2 log(n)1/2+ι

)
.

It follows that
‖Ĩθn − Ĩθ0‖2 ≤ ‖Ĩθn − Ĩθ0‖F = oPθn

(
n−1/2 log(n)1/2+ι

)
.

If, instead, p = 1 + ν/4 < 2 in Lemma 6, then by the Marcinkiewicz & Zygmund SLLN (e.g.
Theorem 2.5.12 in Durrett, 2019)

1

n

n∑
i=1

Q̆r,s
l,m,i,n −GQ̆

r,s
l,m,i,n = oG

(
n

1−p
p

)
,

and similarly

‖Ĩθn − Ĩθ0‖2 ≤ ‖Ĩθn,n − Ĩθ0‖F = oPθn

(
n

1−p
p

)
.

That is, for any p ∈ (1, 2] we have ‖Ĩθn − Ĩθ0‖2 = oPθn (νn,p) = oPθn (ν
1/2
n ).

For the other component of the sum, let r ∈ {α, σ, b} and let l denote an index, we write
Ûn,i,rl := ˆ̀

γn,rl(Yi), Ũi,rl := ˜̀
θn,rl(Yi) and Dn,i,rl := ˆ̀

γn,rl(Yi)− ˜̀
θn,rl(Yi).

Since it is the absolute value of the (r, l)− (s,m) component of Îγn,n− Ĩθ0,n, it is sufficient

to show that
∣∣∣ 1
n

∑n
i=1 Ûn,i,r,lDn,i,s,m + 1

n

∑n
i=1Dn,i,r,lŨi,s,m

∣∣∣ = oPθn (ν
1/2
n ) as n → ∞ for any

25Note that for large enough n ∈ N βn is in a ball of radius, say, δ > 0 around β. The (continuous)
differentiability of (α, β1) 7→ A(α, β1) and the fact that Db,l is a constant matrix implies that the map
(α, β1) 7→ [−A(α, β1)k•Db,l] is Lipschitz on this set.
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r, s ∈ {(α, σ), b} and l,m. By Cauchy-Schwarz and lemma 8∣∣∣∣∣ 1n
n∑
i=1

Dn,i,r,lŨi,s,m

∣∣∣∣∣ ≤
(

1

n

n∑
i=1

Ũ2
i,s,m

)1/2(
1

n

n∑
i=1

D2
n,i,r,l

)1/2

= OPθn
(1)×oPθn (ν1/2

n ) = oPθn (ν1/2
n ),

∣∣∣∣∣ 1n
n∑
i=1

Ûn,i,r,lDn,i,s,m

∣∣∣∣∣ ≤
(

1

n

n∑
i=1

Û2
n,i,r,l

)1/2(
1

n

n∑
i=1

D2
n,i,s,m

)1/2

= OPθn
(1)×oPθn (ν1/2

n ) = oPθn (ν1/2
n ),

for any (r, l)− (s,m). It follows that[
1

n

n∑
i=1

Ûn,i,r,lDn,i,s,m +Dn,i,r,lŨi,s,m

]2

≤ 2

[
1

n

n∑
i=1

Ûn,i,r,lDn,i,s,m

]2

+2

[
1

n

n∑
i=1

Dn,i,r,lŨi,s,m

]2

= oPθn (νn)

and hence ‖Îγn,n − Ĩθ0,n‖2 ≤ ‖Îγn,n − Ĩθ0,n‖F = oPθn (ν
1/2
n ). We can combine these results to

obtain:

‖Îγn,n − Ĩθ0‖2 ≤ ‖Îγn,n − Ĩθn,n‖2 + ‖Ĩθn,n − Ĩθ0‖2 = oPθn (ν1/2
n ) + oPθn (ν1/2

n ) = oPθn (ν1/2
n ).

It remains to show that part 4 of Assumption 4 holds. Recall that the dominating measure
here is λ and re-write the integral in question as∫ ∥∥∥˜̀

θnp
1/2
θn
− ˜̀

θ0p
1/2
θ0

∥∥∥2

dλ =
L∑
l=1

∫ [
˜̀
θn,lp

1/2
θn
− ˜̀

θ0,lp
1/2
θ0

]2

dλ. (37)

It is evidently sufficient to show that each of the integrals in the sum on the rhs converges
to zero. To this end, let fr,n := ˜̀

θn,r,lp
1/2
θn

and fr := ˜̀
θ0,rlp

1/2
θ0

for r ∈ {α, σ, b} corresponding

to (31)-(33) for some arbitrary l. By the expressions for ˜̀
θn and pθn given in lemma 2 and

equation (28) respectively along with the continuity of A, Dl and each ηk and φk (each of
which follows from our assumptions), we have that fr,n → fr λ-a.e. for all r. Moreover,
using the representation in (31) we have

∫
f 2
α,n dλ =

∫ ( K∑
k=1

[
ζαl,k,k,n [τk,1εk,i + τk,2κ(εk,i)] +

K∑
j=1,j 6=k

ζαl,k,j,nφk(εk,i)εj,i

])2

dG

=
K∑
k=1

K∑
j=1,j 6=k

K∑
b=1

K∑
m=1,m 6=b

ζαl,k,j,nζ
α
l,b,m,n

∫
φk(εk,i)εj,iφb(εb,i)εm,i dG

+ 2
K∑
k=1

K∑
j=1,j 6=k

K∑
b=1

ζαl,k,j,nζ
α
l,b,b,n

∫
φk(εk,i)εj,i [τb,1εb,i + τb,2κ(εb,i)] dG

+
K∑
k=1

K∑
b=1

ζαl,k,k,nζ
α
l,b,b,n

∫
[τb,1εb,i + τb,2κ(εb,i)] [τk,1εk,i + τk,2κ(εk,i)] dG

where G is the law of ε and each of the integrals are finite by assumption 14. By the
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continuity of A and Dl, this converges to

∫
f 2
α dλ =

∫ ( K∑
k=1

[
ζαl,k,k,∞ [τk,1εk,i + τk,2κ(εk,i)] +

K∑
j=1,j 6=k

ζαl,k,j,∞φk(εk,i)εj,i

])2

dG

=
K∑
k=1

K∑
j=1,j 6=k

K∑
b=1

K∑
m=1,m 6=b

ζαl,k,j,∞ζ
α
l,b,m,∞

∫
φk(εk,i)εj,iφb(εb,i)εm,i dG

+ 2
K∑
k=1

K∑
j=1,j 6=k

K∑
b=1

ζαl,k,j,∞ζ
α
l,b,b,∞

∫
φk(εk,i)εj,i [τb,1εb,i + τb,2κ(εb,i)] dG

+
K∑
k=1

K∑
b=1

ζαl,k,k,∞ζ
α
l,b,b,∞

∫
[τb,1εb,i + τb,2κ(εb,i)] [τk,1εk,i + τk,2κ(εk,i)] dG,

which is finite by assumption 1. By Proposition 2.29 in van der Vaart (1998) we conclude
that

∫
(fα,n− fα)2 dλ→ 0. Analogous arguments hold for r = σ, b; we omit the details. The

convergence of each
∫

(fr,n − fr)2 dλ → 0 in conjunction with equation (37) is sufficient for
part 4.

B1: Supporting Lemmas

Lemma 4. Suppose that assumption 1 holds and let k, j, s, b ∈ [K] with j 6= k and s 6= b.
Then, for G the law of ε and any p ∈ [1, 2] we have that

(i) ‖φk(εk)εjφs(εs)εb‖G,p <∞,

(ii) ‖φk(εk)εjεs‖G,p <∞,

(iii) ‖εkεs‖G,p <∞.

Proof. By Cauchy-Schwarz, independence and our moment conditions we have

‖φk(εk)εjφs(εs)εb‖G,p ≤
[
G[φk(εk)]

2pG[εj]
2pG[φs(εs)]

2pG[εb]
2p
] 1

2p <∞,

‖φk(εk)εjεs‖G,p ≤
[
G[φk(εk)]

2pG[εj]
2pG[εs]

2p
]1/(2p)

<∞,
‖εkεs‖G,p = ‖(εk)p(εs)p‖1/p

G,1 ≤ ‖(εk)
p‖1/p
G,2‖(εs)

p‖1/p
G,2 <∞.

Lemma 5. Suppose that assumption 1 holds and let k, j, s ∈ [K] with j 6= k. Then, for G
the law of ε and 1 ≤ p ≤ min(1 + δ/4, 2), we have

(i) ‖φk(εk)εjκ(εs)‖G,p <∞,

(ii) ‖εkκ(εs)‖G,p <∞,

(iii) ‖κ(εk)κ(εs)‖G,p <∞.
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Proof. By Cauchy-Schwarz, independence and our assumed moment conditions we have

‖φk(εk)εjκ(εs)‖G,p ≤
[[
G[φk(εk)]

2pG[εs]
4p
]1/(2p)

+ ‖φk(εk)‖G,p
]
‖εj‖G,p <∞,

‖εkκ(εs)‖G,p ≤ ‖(εk)p‖1/p
G,2‖(εs)

2p‖1/p
G,2 + ‖εk‖G,p <∞,

‖κ(εk)κ(εs)‖G,p ≤ ‖(εk)2p‖1/p
G,2‖(εs)

2p‖1/p
G,2 + 2‖(εk)2‖G,p + 2‖(εs)2‖G,p + 1 <∞.

Lemma 6. Define

qαl,i,n :=
K∑
k=1

K∑
j=1,j 6=k

ζαl,k,j,nφk(εk,i)εj,i +
K∑
k=1

ζαl,k,k,n [τk,1εk,i + τk,2κ(εk,i)]

qσl,i,n :=
K∑
k=1

K∑
j=1,j 6=k

ζσl,k,j,nφk(εk,i)εj,i +
K∑
k=1

ζσl,k,k,n [τk,1εk,i + τk,2κ(εk,i)]

qbl,i,n := −
K∑
k=1

[An,k•Db,l] [(Xi − EXi)φk(εk,i)− EXi(ςk,1εk,i + ςk,2κ(εk,i))]

where the dependence of e.g. ζαl,k,j,n on n is as in the proof of Theorem 1.26 Let Q̆r,s
l,m,i,n :=

qrl,i,nq
s
m,i,n. Suppose that assumption 1 holds. Then, for 1 ≤ p ≤ min(1 + δ/4, 2) we have

‖Q̆r,s
l,m,i,n‖G,p <∞ for G the law of (X̃, ε).

26See footnote 24.
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Proof. By definition we have

Q̆α,α
l,m,i,n =

K∑
k=1

K∑
j=1,j 6=k

K∑
s=1

K∑
b=1,b 6=s

ζαl,k,j,nζ
α
m,s,b,nφk(εk,i)εj,iφs(εs,i)εb,i

+ 2
K∑
k=1

K∑
j=1,j 6=k

K∑
s=1

ζαl,k,j,nζ
α
m,s,s,nφk(εk,i)εj,i[τs,1εs,i + τs,2κ(εs,i)]

+
K∑
k=1

K∑
s=1

ζαl,k,k,nζ
α
m,s,s,n[τk,1εk,i + τk,2κ(εk,i)][τs,1εs,i + τs,2κ(εs,i)].

Q̆α,b
l,m,i,n = −

K∑
s=1

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,j,nφk(εk,i)εj,i[An,s•Db,l](Xi − EXi)φs(εs,i)

+
K∑
s=1

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,j,nφk(εk,i)εj,i[An,s•Db,l]EXi(ςs,1εs,i + ςs,2κ(εs,i))

−
K∑
s=1

K∑
k=1

ζαl,k,k,n[τk,1εk,i + τk,2κ(εk,i)][An,s•Db,l](Xi − EXi)φs(εs,i)

+
K∑
s=1

K∑
k=1

ζαl,k,k,n[τk,1εk,i + τk,2κ(εk,i)][An,s•Db,l]EXi(ςs,1εs,i + ςs,2κ(εs,i))

Q̆b,b
l,m,i,n =

K∑
s=1

K∑
k=1

[An,s•Db,l](Xi − EXi)φs(εs,i)[An,k•Db,l](Xi − EXi)φk(εk,i)

+ 2
K∑
s=1

K∑
k=1

[An,s•Db,l]EXi(ςs,1εs,i + ςs,2κ(εs,i))[An,k•Db,l](Xi − EXi)φk(εk,i)

+
K∑
s=1

K∑
k=1

[An,s•Db,l]EXi(ςs,1εs,i + ςs,2κ(εs,i))[An,k•Db,l]EXi(ςk,1εk,i + ςk,2κ(εk,i))

Hence, by Minkowski’s inequality, the independence of ε from X̃ (with finite second moments)
and lemmas 4 & 5, ‖Q̆r,s

l,m,i,n‖G,p < ∞, noting that for σ instead of α we have the same
expressions.

Lemma 7. Suppose assumption 1 holds and νn,p and νn are as in assumption 2. Then

‖κ̂k,n − κk,n‖2 = oPθn (νn,p) = oPθn (ν
1/2
n ) for κ ∈ {τ, ς}.

Proof. Under Pθn , An,k•(Zi −BnXi) ' εk,i ∼ ηk, hence the claim will follow if we show that

κ̌k,n − κ̆k = oGk(ν
1/2
n ), where

κ̌k,n := M̌−1
k,nw, where M̌k,n :=

(
1 1

n

∑n
i=1(εk,i)

3

1
n

∑n
i=1(εk,i)

3 1
n

∑n
i=1(εk,i)

4 − 1

)
,

κ̆k,n := M̆−1
k,nw, where M̆k,n :=

(
1 Gk(εk,i)

3

Gk(εk,i)
3 Gk(εk,i)

4 − 1

)
,
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and w ∈ R2. By the preceding definitions and the fact that the map M 7→M−1 is Lipschitz
at a positive definite matrix M0 we have that for a positive constant C then for large enough
n, with probability approaching one

‖κ̌k,n − κ̆k,n‖2 = ‖(M̌−1
k,n − M̆

−1
k )w‖2 ≤ ‖w‖2‖M̌−1

k,n − M̆
−1
k ‖2 . C‖M̌k,n − M̆k‖2. (38)

If υ := δ/4 ≥ 1, we have that by Theorem 2.5.11 in Durrett (2019)

1

n

n∑
i=1

[(εk,i)
3 −Gk(εk,i)

3] = oGk
(
n−1/2 log(n)1/2+ι

)
1

n

n∑
i=1

[(εk,i)
4 −Gk(εk,i)

4] = oGk
(
n−1/2 log(n)1/2+ι

)
for ι > 0, which implies that

‖M̌k,n − M̆k‖2 ≤ ‖M̌k,n − M̆k‖F = oGk
(
n−1/2 log(n)1/2+ι

)
.

If 0 < υ < 1, we have by Theorems 2.5.11 & 2.5.12 in Durrett (2019) that for ι > 0,

1

n

n∑
i=1

[(εk,i)
3 −Gk(εk,i)

3] =

{
oGk

(
n−1/2 log(n)1/2+ι

)
if υ ∈ [1/2, 1)

oGk

(
n

1−p
p

)
if υ ∈ (0, 1/2)

,

1

n

n∑
i=1

[(εk,i)
4 −Gk(εk,i)

4] = oGk

(
n

1−p
p

)
.

which together imply that

‖M̌k,n − M̆k‖2 ≤ ‖M̌k,n − M̆k‖F = oGk

(
n

1−p
p

)
.

Combining these convergence rates with equation (38) yields the result in light of the obser-
vations made at the beginning of the proof.

Lemma 8. Suppose assumptions 1 and 2 hold and θn = (α0, βn, η) where
√
n(βn−β) = O(1)

is a deterministic sequence. Then for each r ∈ {α, σ, b} and l

1

n

n∑
i=1

(
ˆ̀
γn,rl(Yi)− ˜̀

θn,rl(Yi)
)2

= oPθn (νn).

Proof. In this proof we let Mk := Mk• for any matrix M . We start by considering elements

in 1
n

∑n
i=1

(
ˆ̀
γn,αl(Yi)− ˜̀

θn,αl(Yi)
)2

(noting that the result for σ will be the same). We define

τ̃k,n,q := τ̂k,n,q− τk,q and Vi,n = Zi−BnXi. Since each |ζαl,k,j,n| <∞ and the sums over k, j are
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finite, it is sufficient to demonstrate that for every k, j,m, s ∈ [K], with k 6= j and s 6= m,

1

n

n∑
i=1

[
φ̂k,n(An,kVi,n)− φk(An,kVi,n)

] [
φ̂s,n(An,sVi,n)− φs(An,sVi,n)

]
An,jVi,nAn,mVi,n = oPθn (νn),

(39)

1

n

n∑
i=1

[
φ̂k,n(An,kVi,n)− φk(An,kVi,n)

]
An,jVi,n [τ̃s,n,1An,sVi,n + τ̃s,n,2κ(An,sVi,n)] = oPθn (νn),

(40)

1

n

n∑
i=1

[τ̃s,n,1An,sVi,n + τ̃s,n,2κ(An,sVi,n)] [τ̃k,n,1An,kVi,n + τ̃k,n,2κ(An,kVi,n)] = oPθn (νn). (41)

For (41), let ξ1(x) = x and ξ2(x) = κ(x). Then, we can split the sum into 4 parts, each
of which has the following form for some q, w ∈ {1, 2}

1

n

n∑
i=1

τ̃s,n,q τ̃k,n,wξq(An,sVi,n)ξw(An,kVi,n) = τ̃s,n,q τ̃k,n,w
1

n

n∑
i=1

ξq(An,sVi,n)ξw(An,kVi,n) = oPθn (νn),

since we have that each τ̃s,n,q τ̃k,n,w = oPθn (νn) by lemma 7.27 For (40) we can argue similarly.
Again let ξ1(x) = x and ξ2(x) = κ(x). Then, we can split the sum into 2 parts, each of which
has the following form for some q ∈ {1, 2}

1

n

n∑
i=1

[
φ̂k,n(An,kVi,n)− φk(An,kVi,n)

]
An,jVi,nτ̃s,n,qξq(An,sVi,n)

≤ τ̃s,n,q

(
1

n

n∑
i=1

[
φ̂k,n(An,kVi,n)− φk(An,kVi,n)

]2

(An,jVi,n)2

)1/2(
1

n

n∑
i=1

ξq(An,sVi,n)2

)1/2

= oPθn (νn).

by Lemma 3 applied with Wi,n = An,jVi,n and τ̃s,n,q = oPθn (ν
1/2
n ).28 For (39) use Cauchy-

27The fact that 1
n

∑n
i=1 ξq(An,sVi,n)ξw(An,kVi,n) = OPθn (1) can be seem to hold using the moment and

i.i.d. assumptions from assumption 1 and Markov’s inequality, noting once more that An,kVi,n ' εk,i under
Pθn .

28See footnote 27.
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Schwarz with lemma 3:

1

n

n∑
i=1

[
φ̂k,n(An,kVi,n)− φk(An,kVi,n)

] [
φ̂s,n(An,sVi,n)− φs(An,sVi,n)

]
An,jVi,nAn,mVi,n

≤

(
1

n

n∑
i=1

[
φ̂k,n(An,kVi,n)− φk(An,kVi,n)

]2

(An,jVi,n)2

)1/2

×

(
1

n

n∑
i=1

[
φ̂s,n(An,sVi,n)− φs(An,sVi,n)

]2

(An,mVi,n)2

)1/2

= oPθn (νn).

Finally, we consider the elements in 1
n

∑n
i=1

(
ˆ̀
γn,bl(Yi)− ˜̀

θn,bl(Yi)
)2

, where we let an,k,l :=

−An,kDb,l and note that

ˆ̀
γn,bl(Yi)− ˜̀

θn,bl(Yi)

=
K∑
k=1

an,k,l

[
(Xi − EXi)[φ̂k(Vi,k,n)− φk(Vi,k,n)] + (EXi − X̄n)φk(Vi,k,n)

]

+
K∑
k=1

an,k,l

[
(EXi − X̄n)[ς̂k,n,1Vi,k,n + ς̂k,n,2κ(Vi,k,n)]

]

−
K∑
k=1

an,k,l

[
EXi[(ς̂k,n,1 − ςk,1)Vi,k,n + (ς̂k,n,2 − ςk,2)κ(Vi,k,n)]

]
We have

1

n

n∑
i=1

(
ˆ̀
γn,bl(Yi)− ˜̀

θn,bl(Yi)
)2

.
K∑
k=1

1

n

n∑
i=1

[an,k,l(Xi − EXi)]
2[φ̂k(Vi,k,n)− φk(Vi,k,n)]2 + [an,k,l(EXi − X̄n)]2φk(Vi,k,n)2

+
K∑
k=1

1

n

n∑
i=1

[an,k,l(EXi − X̄n)]2[ς̂k,n,1Vi,k,n + ς̂k,n,2κ(Vi,k,n)]2

+
K∑
k=1

1

n

n∑
i=1

[an,k,lEXi]
2[(ς̂k,n,1 − ςk,1)Vi,k,n + (ς̂k,n,2 − ςk,2)κ(Vi,k,n)]2

The first term is oPθn (νn) by Cauchy-Schwarz and applying lemma 3, the second and third
terms follows from (an,k,l(X̄n − EXi))

2 = OPθn
(n−1) = oPθn (νn) and the fourth term follows

from Lemma 7.
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C: Proof of Theorem 2

Proof of Theorem 2. Let P0 := Pθ0 , where θ0 is defined in Assumption 4. The first step is to
show that assumption 4 implies that

√
nPn

[
ˆ̀
γn − ˜̀

θn

]
P0−→ 0,

√
nPn

[
˜̀
θn − ˜̀

θ0

]
+
√
nĨθ0(0, (βn − β)′)′

P0−→ 0 (42)

and
ν−1
n

∥∥∥Îγn − Ĩθ0∥∥∥ = oP0(1). (43)

To do so, define bn :=
√
n(βn−β) and let (nm)m≥1 be an arbitrary subsequence of (n)n≥1.

It is sufficient for (42)-(43) that we can demonstrate that there is a further subsequence
(nm(k))k≥1 along which the claimed convergence holds. There exists a sub-subsequence such
that bnm(k)

→ b for some b ∈ RLβ .29 Taking such a subsequence will suffice as we will now
demonstrate that the claimed convergence holds for an arbitrary convergent sequence bn → b.

Let Qn
n denote the law of (Yi)

n
i=1 corresponding to θn and P n

0 that corresponding to θ0.
Let Λn(Qn, P0) = nPn log qn − log p0 be the corresponding log-likelihood ratio. In view of
the differentiability in quadratic mean of the model (e.g. Definition 1) we have by van der
Vaart and Wellner, 1996, lemma 3.10.11:

Λn(Qn, P ) =
√
nPnb′ ˙̀θ0,β −

1

2
b′İθ0,ββb+Rn,

where Rn → 0 in probability under both P n
0 and Qn

n and İθ0 = V( ˙̀
θ0). Noting that ˙̀

θ0 is a
score by assumption 3 and hence in L2(P0) (e.g. van der Vaart, 2002, Lemma 1.7) it follows
by the CLT that

Λn(Qn, P ) N
(
−1

2
b′İθ0,ββb, b

′İθ0,ββb

)
,

under P0, from which we can conclude that P n
0 / . Q

n
n (e.g. van der Vaart and Wellner, 1996,

example 3.10.6). This mutual contiguity and Le Cam’s first lemma (e.g. van der Vaart, 1998,
Lemma 6.4) ensure that left claim in (42) and (43) hold given parts 2 & 3 of assumption 4.
Noting that P0[˜̀θ0

˙̀′
θ0,β

]b = Ĩθ0(0, b
′)′, the right claim of equation (42) follows by proposition

A.10 in van der Vaart (1988), which requires Assumption 4-part 4.30

Next we show that (42) and (43) continue to hold if γn (and θn = (γn, η)) is replaced by
γ̄n (and θ̄n = (γ̄n, η)) as defined in the theorem.31 Since β̄n remains

√
n-consistent there is

an M > 0 such that P0

(√
n‖β̄n − β‖ > M

)
< ε. If

√
n‖β̄n − β‖ ≤ M then the discretized

estimator β̄n is equal to one of the values in the finite set Bn = {β′ ∈ n−1/2CZLβ : ‖β′−β‖ ≤
n−1/2M}. For each M this set has finite number of elements bounded independently of n,
call this upper bound B. Let

R′n(β′) :=
√
nPn

[
ˆ̀
γ′ − ˜̀

θ′

]
, R′′n(β′) :=

√
nPn

[
˜̀
θ′ − ˜̀

θ0

]
+
√
nĨθ0(0, (β

′−β)′)′, R′′′n (β′) := ν−1
n [Îγ′−Ĩθ0 ],

29Such a subsequence and b exist by the Bolzano-Weierstrass theorem.
30Cf. lemma 7.3 in van der Vaart (2002); the proof of theorem 25.57 in van der Vaart (1998).
31The proof is adapted from the proof of Theorem 5.48 in van der Vaart (1998).
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where γ′ = (α0, β
′) and θ′ = (γ′, η). Letting Rn denote either R′n, R′′n or R′′′n we have that

for any υ > 0

P0

(
‖Rn(β̄n)‖ > υ

)
≤ ε+

∑
βn∈Bn

P0

(
{‖Rn(βn)‖ > υ} ∩ {β̄n = βn}

)
≤ ε+

∑
βn∈Bn

P0 (‖Rn(βn)‖ > υ)

≤ ε+BP0(‖Rn(β∗n)‖ > υ),

where β∗n ∈ Bn maximises β 7→ P0 (‖Rn(βn)‖ > υ). As (β∗n)n∈N is a deterministic
√
n-

consistent sequence for β we have that P0(‖Rn(β∗n)‖ > υ)→ 0 by equations (42) and (43).
By the version of (42) with γn, θn replaced by γ̄n, θ̄n we have

√
nPn

[
ˆ̀̄
γn − ˜̀

θ0

]
=
√
nPn

[
ˆ̀̄
γn − ˜̀̄

θn

]
+
√
nPn

[
˜̀̄
θn − ˜̀

θ0

]
= −Ĩθ0(0,

√
n(β̄n − β)′)′ + oP0(1).

and by the version of (43) with γn, θn replaced by γ̄n, θ̄n, Îγ̄n
P0−→ Ĩθ0 and so K̂γ̄n

P0−→ K̃θ0 for

K̃θ :=
[
I −Ĩθ,αβ Ĩ−1

θ,ββ

]
, K̂γ :=

[
I −Îγ,αβ Î−1

γ,ββ

]
.

We combine these to obtain

√
nPn [κ̂γ̄n − κ̃θ0 ]

=
(
K̂γ̄n − K̃θ0

)√
nPn

[
ˆ̀̄
γn − ˜̀

θ0

]
+ K̃θ0

√
nPn

[
ˆ̀̄
γn − ˜̀

θ0

]
+
(
K̂γ̄n − K̃θ0

)√
nPn ˜̀

θ0

= −K̃θ0 Ĩθ0(0,
√
n(β̄n − β)′)′ + oP0(1)

= −
[
I −Ĩθ0,αβ Ĩ−1

θ0,ββ

] [Ĩθ0,αα Ĩθ0,αβ
Ĩθ0,βα Ĩθ0,ββ

] [
0√

n(β̄n − β)

]
+ oP0(1)

= oP0(1).

Then, by assumption 4-part 1, under P0,

Zn :=
√
nPnκ̂γ̄n =

√
nPn [κ̂γ̄n − κ̃θ0 ] +

√
nPnκ̃θ0  Z ∼ N (0, Ĩθ0).

For the next step, observe that∥∥∥Îγ̄n − Ĩθ0∥∥∥
2
≤
∥∥∥Îγ̄n,αα − Ĩθ0,αα∥∥∥

2
+
∥∥∥Îγ̄n,αβ Î−1

γ̄n,ββ
Îγ̄n,βα − Ĩθ0,αβ Ĩ−1

θ0,ββ
Ĩθ0,βα

∥∥∥
2
.

By repeated addition and subtraction along with the observations that any submatrix has a
smaller operator norm than the original matrix and the matrix inverse is Lipschitz continuous
at a non-singular matrix we obtain∥∥∥Îγ̄n − Ĩθ0∥∥∥

2
.
∥∥∥Îγ̄n − Ĩθ0∥∥∥

2
.
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Hence by equation (43) with γ̄n replacing γn we have P0

(∥∥∥Îγ̄n − Ĩθ0∥∥∥
2
< νn

)
→ 1.

The remainder of the proof is split into two cases. First consider the case where rank(Ĩθ0) =

r > 0. We first show that Îtγ̄n
P0−→ Ĩθ0 and the rank estimate rn = rank(Îtγ̄n) satisfies

P0({rn = r})→ 1.
Let λl denote the lth largest eigenvalue of Ĩθ0 , similarly define λ̂l,n for Îγ̄n and λ̂tl,n for

Îtγ̄n . Define the set Rn := {rn = r}, let ν := λr/2 > 0 and note that ‖Îγ̄n − Ĩθ0‖2 = oP0(νn)

implies that ‖Îγ̄n − Ĩθ0‖2 = oP0(1).

By Weyl’s perturbation theorem32 we have maxl=1,...,Lα |λ̂l,n−λl| ≤ ‖Îγ̄n−Ĩθ0‖2 = oP0(1).

Hence, if we define En := {λ̂r,n ≥ νn}, for n large enough such that νn < ν, we have

P0(En) = P0

(
λ̂r,n ≥ νn

)
≥ P0

(
λ̂r,n ≥ ν

)
≥ P0

(
|λ̂r,n − λr| < ν

)
→ 1.

If r = Lα we have that Rn ⊃ En and therefore P0(Rn) → 1. Additionally, if λ̂Lα,n ≥ νn
then λ̂tl,n = λ̂l,n for each l ∈ [Lα] and hence Îtγ̄n = Îγ̄n . Thus, En ∩ {‖Îγ̄n − Ĩθ0‖ ≤ υ} ⊂
{‖Îtγ̄n − Ĩθ0‖ ≤ υ}, from which it follows that Îtγ̄n

P0−→ Ĩθ0 .
Now suppose instead that r < Lα and define Fn := {λ̂r+1,n < νn}. It follows by Weyl’s

perturbation theorem and the fact that λl = 0 for l > r that as n→∞

P (Fn) = P (λ̂r+1,n < νn) ≥ P (‖Îγ̄n − Ĩθ0‖2 < νn)→ 1.

Since Rn ⊃ En ∩ Fn, this implies that P (Rn) → 1 as n → ∞. Additionally, if λ̂r,n ≥ νn,

λ̂r+1,n < νn and ‖Îγ̄n − Ĩθ0‖2 ≤ υ, we have that λ̂tk,n = λ̂k,n for k ≤ r and λ̂tl,n = 0 = λl for
l > r and so

‖Λ̂n(νn)− Λ‖2 = max
l=1,...,r

|λ̂tl,n − λl| = max
l=1,...,r

|λ̂l,n − λl| ≤ ‖Λ̂n − Λ‖2 ≤ ‖Îγ̄n − Ĩθ0‖2 ≤ υ,

and hence {‖Îγ̄n − Ĩθ0‖2 ≤ υ} ∩En ∩ Fn ⊂ {‖Λ̂n(νn)−Λ‖2 ≤ υ}, from which it follows that

Λ̂n(νn)
P0−→ Λ.

To complete this part of the proof, suppose that (λ1, . . . , λr) consists of s distinct eigen-
values with values λ1 > λ2 > · · · > λs and multiplicities m1, . . . ,ms (each at least one),
where the superscripts on the λs are indices, not exponents. λs+1 = 0 is an eigenvalue
with multiplicity ms+1 = Lα − r. Let lki for k = 1, . . . , s + 1 and i = 1, . . . ,mk denote the
column indices of the eigenvectors in U corresponding to each λk. For each λk, the total
eigenprojection is Πk :=

∑mk
i=1 ulki u

′
lki

.33 Total eigenprojections are continuous.34 Therefore,

if we construct Π̂k,n in in an analogous fashion to Πk but replace columns of U with columns

of Ûn, we have Π̂k,n
P0−→ Πk for each k ∈ [s + 1] since Îγ̄n

P0−→ Ĩθ0 . Spectrally decompose Ĩθ0
32E.g. Corollary III.2.6 in Bhatia (1997).
33See e.g Chapter 8.8 of Magnus and Neudecker (2019).
34E.g. Theorem 8.7 of Magnus and Neudecker (2019).
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as Ĩθ0 =
∑s

k=1 λ
kΠk, where the sum runs to s rather than s+ 1 since λs+1 = 0. Then,

Îtγ̄n =
s+1∑
k=1

mk∑
i=1

λ̂tlki ,n
ûlki ,nû

′
lki ,n

=
s+1∑
k=1

mk∑
i=1

(λ̂tlki ,n
− λk)ûlki ,nû

′
lki ,n

+
s∑

k=1

λkΠ̂k,n,

and so

‖Îtγ̄n − Ĩθ0‖2 ≤
s+1∑
k=1

mk∑
i=1

|λ̂tlki ,n − λ
k|‖ûlki ,nû

′
lki ,n
‖2 +

s∑
k=1

|λk|‖Π̂k,n − Πk‖2
P0−→ 0,

by Π̂k,n
P−→ Πk, Λ̂n(νn)

P0−→ Λ and since we have ‖ulki ,nu
′
lki ,n
‖2 = 1 for any i, k, n.

Hence, we have that Îtγ̄n
P0→ Ĩθ0 and P0({rn = r}) → 1. This implies that Ît,†γ̄n

P0→ Ĩ†θ0
where Ĩ†θ0 is the Moore-Penrose inverse of Ĩθ0 .35

Now consider the score statistic Ŝγ̄n , by Slutsky’s lemma and the continuous mapping
theorem we have that

Ŝγ̄n = Z ′nÎ
t,†
γ̄nZn  Z ′Ĩ†θ0Z ∼ χ2

r

where the distributional result X := Z ′Ĩ†θ0Z ∼ χ2
r, follows from e.g. Theorem 9.2.2 in Rao

and Mitra (1971).
Finally, recall that Rn = {rn = r}. On these sets cn is the 1 − a quantile of the χ2

r

distribution, which we will call c. Hence, we have cn
P0−→ c as P0(Rn) → 1. As a result, we

obtain Ŝγ̄n − cn  X − c where X ∼ χ2
r. Since the χ2

r distribution is continuous, we have by
the Portmanteau theorem

P0

(
Ŝγ̄n > cn

)
= 1− P0

(
Ŝγ̄n − cn ≤ 0

)
→ 1− P0 (X − c ≤ 0) = 1− P0 (X ≤ c) = a ,

which completes the proof in the case that r > 0.
It remains to handle the case with r = 0. We first note that Zn  Z ∼ N (0, Ĩθ0)

continues to hold by our assumptions, though in this case Ĩθ0 is the zero matrix and hence
the limiting distribution is degenerate: Z = 0 a.s.. Let En = {rn = 0}. Part 3 of assumption
4 and Weyl’s perturbation theorem imply that

P0(En) = P0 (rn = 0) = P0

(
max

l=1,...,Lα
|λ̂n,l| < νn

)
≥ P0

(
‖Îγ̄n − Ĩθ0‖2 < νn

)
→ 1.

On the sets En we have that Îtγ̄n is the zero matrix, whose Moore-Penrose inverse is also the

zero matrix. Hence on the sets En we have Ŝγ̄n = 0 and cn = 0 and therefore do not reject,
implying

P0(Ŝγ̄n > cn) ≤ 1− P0(En)→ 0.

It follows that P0(Ŝγ̄n > cn)→ 0.

35 See e.g. Theorem 2 of Andrews (1987).
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D: Figures and tables

Figure 3: Structural Shock Densities
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Notes: The plots show the different densities considered for simulating the structural shocks. Densities 2-4

are t-distributions normalised to have unit variance. Densities 5 - 10 (and their names) are mixtures of

normals taken from Marron and Wand (1992); see their table 1 for the definitions. Density 1 is the standard

Gaussian and omitted from the figure.
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Figure 4: Power Comparison Baseline model
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Notes: Empirical power curves for the baseline model with k = 2 and n = 1000. Each plot corresponds

to the choice for densities εi,k, for k ≥ 2, where the numbers correspond to the different densities shown

in Figure 3. The solid red line corresponds to Sγ̂ , the dashed blue line to LMmle, the dotted pink line to

LMpmle and the dot-dashed green line to Sgmm.
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Figure 5: Power LSEM
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Notes: Empirical power curves for the LSEM model with k = 2, d = 2 and n = 1000. Each plot corresponds

to the choice for densities εi,k, for k ≥ 2, where the numbers correspond to the different densities shown in

Figure 3. The solid red line corresponds to the empirical rejection frequency of the Ŝγ̂ test where γ̂ = (α0, β̂),

with β̂ the OLS estimator. The dashed blue line corresponds to the empirical rejection frequency of the Ŝγ̂

test where γ̂ = (α0, β̂), with β̂ the one-step efficient MLE estimator.
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Figure 6: LSEM Production Function Output 2017
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Notes: The top left panel shows the confidence region for the labor α1 and capital α2. The other three

panels show the empirical densities of the residuals together with the standard normal distribution.
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Figure 7: Confidence intervals labor and capital 2000-2017

2000 2004 2008 2012 2016

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2000 2004 2008 2012 2016

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Notes: The vertical lines describe the confidence bands for labor and capital for each year between 2000

and 2017. Each pair of bands is based on firms observed in the corresponding year and estimated using the

LSEM .
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Table 2: Rejection Frequencies Ŝγ̂ test for Baseline model

n K B 1 2 3 4 5 6 7 8 9 10

200 2 4 0.049 0.049 0.048 0.040 0.047 0.049 0.034 0.049 0.048 0.048

200 2 6 0.048 0.045 0.049 0.044 0.048 0.053 0.047 0.045 0.058 0.051

200 2 8 0.050 0.049 0.047 0.044 0.048 0.048 0.053 0.050 0.051 0.047

200 3 4 0.043 0.039 0.039 0.039 0.044 0.048 0.026 0.049 0.052 0.050

200 3 6 0.045 0.038 0.040 0.044 0.041 0.048 0.044 0.047 0.052 0.043

200 3 8 0.047 0.046 0.040 0.040 0.044 0.048 0.042 0.049 0.044 0.051

200 5 4 0.032 0.034 0.033 0.034 0.035 0.039 0.015 0.041 0.045 0.043

200 5 6 0.037 0.033 0.036 0.032 0.032 0.040 0.043 0.045 0.043 0.044

200 5 8 0.039 0.038 0.038 0.030 0.035 0.043 0.045 0.040 0.041 0.038

500 2 4 0.053 0.046 0.053 0.045 0.047 0.052 0.031 0.049 0.045 0.046

500 2 6 0.048 0.049 0.048 0.048 0.049 0.052 0.057 0.047 0.047 0.049

500 2 8 0.048 0.048 0.045 0.049 0.047 0.045 0.051 0.052 0.048 0.045

500 3 4 0.042 0.039 0.040 0.046 0.048 0.048 0.021 0.042 0.046 0.047

500 3 6 0.043 0.045 0.042 0.042 0.045 0.047 0.047 0.051 0.044 0.045

500 3 8 0.046 0.045 0.040 0.035 0.042 0.047 0.044 0.045 0.050 0.047

500 5 4 0.040 0.036 0.039 0.036 0.041 0.046 0.016 0.048 0.047 0.046

500 5 6 0.041 0.039 0.039 0.039 0.040 0.049 0.046 0.045 0.044 0.044

500 5 8 0.039 0.040 0.036 0.041 0.043 0.050 0.050 0.044 0.046 0.047

1000 2 4 0.042 0.052 0.040 0.055 0.047 0.052 0.046 0.052 0.046 0.048

1000 2 6 0.054 0.052 0.045 0.050 0.045 0.049 0.049 0.054 0.045 0.057

1000 2 8 0.047 0.048 0.048 0.047 0.048 0.052 0.050 0.048 0.055 0.052

1000 3 4 0.049 0.041 0.043 0.045 0.048 0.050 0.054 0.051 0.051 0.047

1000 3 6 0.048 0.044 0.038 0.040 0.050 0.047 0.046 0.049 0.051 0.045

1000 3 8 0.046 0.047 0.047 0.042 0.049 0.045 0.050 0.052 0.043 0.047

1000 5 4 0.038 0.035 0.038 0.047 0.041 0.044 0.050 0.046 0.047 0.048

1000 5 6 0.041 0.043 0.039 0.042 0.043 0.049 0.044 0.048 0.048 0.049

1000 5 8 0.042 0.042 0.038 0.039 0.048 0.050 0.049 0.047 0.045 0.049

Notes: The table shows the empirical rejection frequencies for the Sγ̂ test based on S = 5, 000 Monte Carlo

replications for the baseline model Yi = R′εi. The test has nominal size a = 0.05. The columns denote the

sample size n, the dimension of the model K, the number of B-splines B and the choice for densities εi,k,

for k ≥ 2, where the numbers correspond to the different densities shown in Figure 3.



Table 3: Rejection Frequencies Alternative Tests for Baseline model

Cat (i) n 1 2 3 4 5 6 7 8 9 10

Wmle 200 0.179 0.149 0.139 0.127 0.113 0.059 0.097 0.152 0.125 0.171

500 0.180 0.133 0.114 0.115 0.095 0.167 0.073 0.114 0.097 0.150

1000 0.188 0.101 0.079 0.074 0.061 0.405 0.058 0.124 0.103 0.170

LRmle 200 0.028 0.054 0.060 0.046 0.054 0.026 0.048 0.017 0.018 0.024

500 0.043 0.056 0.068 0.054 0.065 0.023 0.053 0.016 0.017 0.024

1000 0.049 0.065 0.063 0.061 0.053 0.031 0.051 0.022 0.018 0.025

Wpmle 200 0.375 0.211 0.198 0.086 0.141 0.058 0.105 0.495 0.998 0.467

500 0.485 0.264 0.204 0.073 0.163 0.030 0.079 0.973 0.999 0.870

1000 0.570 0.230 0.180 0.051 0.131 0.023 0.068 0.428 1.000 0.947

LRgmm 200 0.413 0.411 0.425 0.441 0.290 0.379 0.120 0.216 0.086 0.232

500 0.292 0.246 0.246 0.286 0.141 0.171 0.025 0.109 0.066 0.106

1000 0.232 0.181 0.155 0.176 0.074 0.115 0.014 0.068 0.059 0.049

Cat (ii) n 1 2 3 4 5 6 7 8 9 10

Ŝγ̂ 200 0.051 0.047 0.048 0.040 0.049 0.049 0.047 0.048 0.050 0.044

500 0.047 0.047 0.054 0.047 0.044 0.043 0.047 0.048 0.051 0.054

1000 0.047 0.043 0.046 0.049 0.048 0.047 0.050 0.044 0.049 0.043

LMmle 200 0.052 0.058 0.054 0.043 0.040 0.043 0.023 0.018 0.002 0.059

500 0.056 0.052 0.052 0.042 0.046 0.047 0.028 0.017 0.001 0.062

1000 0.062 0.052 0.050 0.049 0.039 0.040 0.029 0.016 0.002 0.052

LMplme 200 0.049 0.045 0.049 0.035 0.038 0.046 0.030 0.041 0.042 0.042

500 0.049 0.047 0.050 0.039 0.047 0.046 0.034 0.046 0.044 0.051

1000 0.046 0.048 0.053 0.044 0.041 0.046 0.034 0.042 0.052 0.047

Sgmm 200 0.188 0.209 0.248 0.326 0.236 0.264 0.195 0.108 0.059 0.130

500 0.094 0.105 0.123 0.223 0.116 0.133 0.103 0.057 0.028 0.064

1000 0.061 0.070 0.081 0.162 0.069 0.078 0.054 0.031 0.019 0.035

Notes: The table shows the empirical rejection frequencies based on S = 5, 000 Monte Carlo replications

for the baseline model Yi = R′εi, with n = 500 and K = 2. All tests have nominal size a = 0.05. The first

column indicates the test. The remaining columns denote the choice for densities εi,k, for k ≥ 2, where the

numbers correspond to the different densities shown in Figure 3.
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Table 4: Rejection Frequencies Ŝγ̂ test for LSEM - OLS β̂

n K d 1 2 3 4 5 6 7 8 9 10

200 2 2 0.050 0.054 0.049 0.049 0.038 0.030 0.038 0.043 0.057 0.046

200 2 3 0.049 0.054 0.054 0.048 0.046 0.059 0.042 0.035 0.029 0.052

200 3 2 0.056 0.058 0.050 0.062 0.059 0.031 0.018 0.038 0.047 0.050

200 3 3 0.063 0.054 0.057 0.065 0.060 0.025 0.023 0.051 0.058 0.049

200 5 2 0.098 0.104 0.109 0.142 0.094 0.051 0.064 0.054 0.023 0.057

200 5 3 0.116 0.116 0.131 0.155 0.103 0.039 0.029 0.061 0.026 0.072

500 2 2 0.049 0.050 0.039 0.042 0.041 0.027 0.029 0.036 0.026 0.029

500 2 3 0.048 0.041 0.047 0.047 0.037 0.029 0.024 0.034 0.050 0.051

500 3 2 0.051 0.051 0.048 0.040 0.037 0.028 0.029 0.038 0.022 0.039

500 3 3 0.048 0.050 0.047 0.051 0.053 0.028 0.048 0.041 0.037 0.036

500 5 2 0.071 0.078 0.068 0.081 0.049 0.023 0.060 0.042 0.039 0.038

500 5 3 0.067 0.068 0.080 0.085 0.063 0.022 0.045 0.049 0.027 0.051

1000 2 2 0.040 0.051 0.049 0.029 0.043 0.032 0.033 0.045 0.049 0.041

1000 2 3 0.048 0.044 0.040 0.040 0.040 0.030 0.038 0.046 0.030 0.044

1000 3 2 0.045 0.038 0.043 0.034 0.033 0.032 0.034 0.040 0.039 0.042

1000 3 3 0.044 0.045 0.043 0.036 0.030 0.032 0.035 0.040 0.024 0.034

1000 5 2 0.059 0.051 0.057 0.051 0.039 0.024 0.063 0.030 0.028 0.036

1000 5 3 0.057 0.058 0.056 0.050 0.035 0.018 0.046 0.036 0.029 0.040

Notes: The table shows the empirical rejection frequencies for the Sγ̂ test based on S = 5, 000 Monte Carlo

replications for the linear simultaneous equations model. The test has nominal size a = 0.05. The columns

denote the sample size n, the dimension of the model K, the number of covariates d and the choice for

densities εi,k, for k ≥ 2, where the numbers correspond to the different densities shown in Figure 3. The Sγ̂

test was implemented using B = 6 B-splines.
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Table 5: Rejection Frequencies Ŝγ̂ test for LSEM - One-step β̂

n K d 1 2 3 4 5 6 7 8 9 10

200 2 2 0.067 0.080 0.068 0.081 0.070 0.031 0.054 0.056 0.061 0.051

200 2 3 0.068 0.074 0.076 0.072 0.066 0.071 0.057 0.047 0.026 0.061

200 3 2 0.095 0.106 0.104 0.120 0.090 0.041 0.026 0.059 0.036 0.061

200 3 3 0.099 0.103 0.105 0.114 0.098 0.037 0.028 0.071 0.035 0.064

200 5 2 0.187 0.226 0.247 0.264 0.178 0.063 0.040 0.072 0.020 0.068

200 5 3 0.212 0.238 0.262 0.289 0.193 0.064 0.049 0.089 0.036 0.088

500 2 2 0.062 0.062 0.068 0.067 0.057 0.034 0.049 0.041 0.021 0.037

500 2 3 0.059 0.064 0.071 0.069 0.056 0.031 0.019 0.046 0.031 0.051

500 3 2 0.078 0.078 0.081 0.079 0.066 0.026 0.024 0.047 0.021 0.045

500 3 3 0.076 0.081 0.091 0.088 0.068 0.025 0.029 0.050 0.042 0.042

500 5 2 0.112 0.149 0.158 0.181 0.097 0.036 0.035 0.060 0.030 0.044

500 5 3 0.129 0.151 0.168 0.180 0.101 0.033 0.023 0.069 0.031 0.058

1000 2 2 0.059 0.059 0.065 0.048 0.049 0.025 0.021 0.055 0.050 0.038

1000 2 3 0.060 0.060 0.060 0.068 0.057 0.038 0.052 0.050 0.027 0.051

1000 3 2 0.061 0.067 0.068 0.065 0.053 0.023 0.048 0.047 0.023 0.045

1000 3 3 0.064 0.066 0.072 0.070 0.054 0.040 0.016 0.047 0.022 0.041

1000 5 2 0.091 0.105 0.108 0.111 0.069 0.032 0.026 0.042 0.029 0.043

1000 5 3 0.085 0.102 0.120 0.103 0.065 0.026 0.020 0.047 0.026 0.050

Notes: The table shows the empirical rejection frequencies for the Ŝγ̂ test based on S = 5, 000 Monte Carlo

replications for the linear simultaneous equations model (3). The test has nominal size a = 0.05. The

columns denote the sample size n, the dimension of the observations K, the number of covariates d and the

choice for densities εi,k, for k ≥ 2, where the numbers correspond to the different densities shown in Figure

3. The Sγ̂ test was implemented using B = 6 B-splines and using OLS estimates for β.
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Table 6: Production function estimates 2017

LSEM OLS

Labor [0.41, 0.64] [0.44,0.68] [0.89, 0.99]

Capital [0.27, 0.50] [0.32,0.50] [0.18, 0.26]

Age X X

n 1247 1247 1247

pind 0.12 0.16

Notes: We report the 95% confidence bands for the production function coefficients for labor and capital.

The first three columns consider the bounds obtained by considering the three-variable LSEM (i.e. Yi =

(logOi, logLi, logKi)
′) with different explanatory variables as indicated in the rows. The right-most column

displays the baseline OLS estimates for comparison. The bottom row shows the p-value for the independence

test proposed by Matteson and Tsay (2017) as performed on {Â(Yi − B̂Xi)}ni=1, where Â = D(σ̂)−1S(α̂, σ̂),

with α̂ denoting the minimizer of Ŝγ̂ and σ̂ and B̂ the OLS estimates for σ and B.
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