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Abstract

We study the effects of the adoption of new agricultural technologies on structural transfor-

mation. To guide empirical work, we present a simple model where the effect of agricultural

productivity on industrial development depends on the factor bias of technical change. We test

the predictions of the model by studying the introduction of genetically engineered soybean

seeds in Brazil, which had heterogeneous effects on agricultural productivity across areas with

different soil and weather characteristics. We find that technical change in soy production was

strongly labor saving and led to industrial growth, as predicted by the model.
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1 Introduction

The early development literature documented that the growth path of most advanced economies

was accompanied by a process of structural transformation. As economies develop, the share of

agriculture in employment falls and workers migrate to cities to find employment in the industrial

and service sectors [Clark (1940), Lewis (1954), Kuznets (1957)]. These findings suggest that iso-

lating the forces that can give rise to structural transformation is key to our understanding of the

development process. In particular, scholars have argued that increases in agricultural productivity

are an essential condition for economic development, based on the experience of England during the

industrial revolution.1 Classical models of structural transformation formalize their ideas by show-

ing how productivity growth in agriculture can release labor or generate demand for manufacturing

goods.2 However, several scholars noted that the positive effects of agricultural productivity on

industrialization occur only in closed economies, while in open economies a comparative advantage

in agriculture can slow down industrial growth.3 Despite the richness of the theoretical literature,

there is scarce direct empirical evidence testing the mechanisms proposed by these models.4

In this paper we provide direct empirical evidence on the effects of technical change in agriculture

on the industrial sector by studying the recent widespread adoption of new agricultural technologies

in Brazil. First, we analyze the effects of the adoption of genetically engineered soybean seeds (GE

soy). This new technology requires less labor per unit of land to yield the same output. Thus, it

can be characterized as labor-augmenting technical change. In addition, we study the effects of the

introduction of a second harvesting season for maize (milho safrinha). This technique permits to

grow two crops a year, effectively increasing the land endowment. Thus, it can be characterized as

land-augmenting technical change. The simultaneous expansion of these two crops allows to assess

the effect of agricultural productivity on structural transformation in open economies.

To guide empirical work, we build a simple model describing a two-sector small open economy

where technical change in agriculture can be factor biased. The model predicts that a Hicks-

neutral increase in agricultural productivity induces a reduction in the size of the industrial sector

as labor reallocates towards agriculture, as in classical open economy models such as Matsuyama

(1992). Similar results are obtained when technical change is land-augmenting. However, if land

1See, for example, Rosenstein-Rodan (1943), Nurkse (1953), Lewis (1954), Rostow (1960).
2See Baumol (1967), Murphy, Shleifer, Vishny (1989), Kongsamut, Rebelo and Xie (2001), Gollin, Parente and

Rogerson (2002), Ngai and Pissarides (2007).
3See Mokyr (1976), Field (1978), Wright (1979), Corden and Neary (1982), Krugman (1987), and Matsuyama

(1992).
4Empirical studies of structural transformation include Foster and Rosenszweig (2004, 2008), Nunn and Qian

(2011), Michaels, Rauch and Redding (2012), Hornbeck and Keskin (2012). We discuss this literature in more detail
below.
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and labor are strong complements in agricultural production, labor-augmenting technical change

reduces labor demand in agriculture and causes workers to reallocate towards manufacturing. In

sum, the model predicts that the effects of agricultural productivity on structural transformation

in open economies depend on the factor-bias of technical change.

In a first analysis of the data we find that regions where the area cultivated with soy expanded

experienced an increase in agricultural output per worker, a reduction in labor intensity in agri-

culture and an expansion in industrial employment. These correlations are consistent with the

theoretical prediction that the adoption of labor-augmenting agricultural technologies reduces la-

bor demand in the agricultural sector and induces the reallocation of workers towards the industrial

sector. However, causality could run in the opposite direction. For example: an increase in produc-

tivity in the industrial sector could increase labor demand and wages, inducing agricultural firms

to switch to less labor intensive crops, like soy.

We propose to establish the direction of causality by using two sources of exogenous variation

in the profitability of technology adoption. First, in the case of GE soy, as the technology was

invented in the U.S. in 1996, and legalized in Brazil in 2003, we use this last date as our source of

variation across time. Second, as the new technology had a differential impact on yields depending

on geographical and weather characteristics, we use differences in soil suitability across regions as

our source of cross-sectional variation. Similarly, in the case of maize, we exploit the timing of

expansion of second-harvest maize and cross-regional differences in soil suitability.

We obtain an exogenous measure of technological change in agriculture by using estimates of

potential soil yields across geographical areas of Brazil from the FAO-GAEZ database. These

yields are calculated by incorporating local soil and weather characteristics into a model that

predicts the maximum attainable yields for each crop in a given area. Potential yields are a source

of exogenous variation in agricultural productivity because they are a function of weather and soil

characteristics, not of actual yields in Brazil. In addition, the database reports potential yields

under traditional and new agricultural technologies. Thus, we exploit the predicted differential

impact of the new technology on yields across geographical areas in Brazil as our source of cross-

sectional variation in agricultural productivity. Note that this empirical strategy relies on the

assumption that although goods can move across geographical areas of Brazil, labor markets are

local due to limited labor mobility. This research design allows us to investigate whether exogenous

shocks to local agricultural productivity lead to changes in the size of the local industrial sector.

We use municipalities as our geographical unit of observation, which are assumed to behave as the

small open economy described in the model.

We find that municipalities where the new technology is predicted to have a higher effect on
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potential yields of soy did experience a larger expansion of the area planted with GE soy. In

addition, these regions experienced increases in the value of agricultural output per worker and

reductions in labor intensity measured as employment per hectare. Besides, these regions experi-

enced faster employment growth and wage reductions in the industrial sector. Interestingly, the

effects of technology adoption are different for maize. Regions where the FAO potential maize yields

are predicted to increase the most when switching from the traditional to the new technology did

indeed experience a higher increase in the area planted with maize. However, they also experienced

increases in labor intensity, reductions in industrial employment and increases in wages.

The different effects of technological change in agriculture documented for GE soy and maize

indicate that the factor-bias of technical change is a key determinant of the relationship between

agricultural productivity and structural transformation in open economies. Land-augmenting tech-

nical change, the case of second-harvest maize, leads to an increase in the marginal product of

labor in agriculture and a reduction in industrial employment. However, labor-augmenting techni-

cal change, the case of GE soy, leads to a reduction in the marginal product of labor in agriculture

and employment growth of the industrial sector. Thus, in what follows we refer to labor-augmenting

technical change as labor-saving.5

Our estimates can be used to quantify the effect of factor-biased agricultural technical change

on structural transformation. In particular, we compute the elasticity of sectoral employment

shares to changes in agricultural productivity induced by soy technical change: 1 percent increase

in agricultural labor productivity leads to a 0.16 percentage points decrease in the agricultural

employment share and an increase in the manufacturing employment share of a similar magnitude.

These estimates can be used to understand to what extent the observed differences in the speed of

structural transformation across Brazilian municipalities can be explained by labor-saving technical

change in soy. In the year 2000, the average municipality had employment shares in agriculture

and manufacturing of 38 and 10 percent, respectively. During the next decade, the degree of

labor reallocation across sectors varied extensively across municipalities. Our estimates imply

that labor-saving technical change in soy can explain 24 percent of the observed differences in the

reduction of the agricultural employment share across Brazilian municipalities and 31 percent of

the corresponding differences in the growth of the manufacturing employment share.

We complement our findings with an analysis of the service sector. For this purpose, we extend

the theoretical model by incorporating non-traded services. A central feature of the analysis is the

distinction between two effects of agricultural technical change: the supply effect and the demand

effect. In the case of land-augmenting technical change, the first effect is generated by the increase

5A formal definition of labor-saving technical change is contained in Section 3.
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in the marginal product of labor in the agricultural sector, which draws workers out of other sectors.

The second effect is generated by the higher income resulting from technical change in agriculture

which leads to increased demand for non-traded services. Both effects lead to a reallocation of labor

away from the manufacturing sector. However, when technical change is labor-saving, the supply

effect releases agricultural workers. As a result, the net effect of agricultural technical change on

industrialization depends on the relative strength of the supply and demand effects. In addition, the

demand effect is only driven by an increase in land rents. Thus, its strength depends on the extent

to which land-owners consume services in the region where their land is located. Our empirical

results imply that in regions more affected by labor-saving technical change labor reallocated from

agriculture to manufacturing and not towards services. Our interpretation of these findings is that

the differences-in-differences empirical strategy is well suited to identify the supply effect to the

extent that labor markets are local. However, our model suggests that it might not be suitable to

identify the demand effect if land owners do not reside locally or consume services in other regions.

Thus, a further investigation of the effect of agricultural technical change on the service sector is

left for future work.

Finally, we assess the robustness of our estimates to a number of deviations from our baseline

framework. First, estimates are stable when we allow municipalities with different initial levels

of development to be on differential structural transformation trends. Second, we obtain similar

estimates in the subsample of Brazilian municipalities where the agricultural frontier did not ex-

pand. Third, contemporaneous migration patterns are consistent with the predictions of the model:

there is out (in) migration in areas more affected by labor-augmenting (land-augmenting) technical

change. Fourth, our estimates are not driven by pre-existing trends in manufacturing employment

nor migration flows. Fifth, our results are robust to using a larger unit of observation, micro-

regions. Sixth, at least 60 percent of our estimated effect of agricultural technical change on the

manufacturing employment share is not driven by the processing of soy and maize in downstream

industries nor larger agricultural sector demand for manufacturing inputs. Seventh, our estimates

are not driven by contemporaneous changes in commodity prices. Finally, our main results remain

statistically significant when we correct standard errors to account for spatial correlation.

Related Literature

There is a long tradition in economics of studying the links between agricultural productivity and

industrial development. Nurkse (1953), Schultz (1953) and Rostow (1960) argued that agricultural

productivity growth was an essential precondition for the industrial revolution. Classical models

of structural transformation formalized their ideas by proposing two main mechanisms through

which agricultural productivity can speed up industrial growth in closed economies. First, the
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demand channel: agricultural productivity growth rises income per capita, which generates de-

mand for manufacturing goods if preferences are non-homothetic [Murphy, Shleifer, Vishny (1989),

Kongsamut, Rebelo and Xie (2001), Gollin, Parente and Rogerson (2002)]. The higher relative

demand for manufactures generates a reallocation of labor away from agriculture. Second, the sup-

ply channel: if productivity growth in agriculture is faster than in manufacturing and these goods

are complements in consumption, then the relative demand of agriculture does not grow as fast

as productivity and labor reallocates towards manufacturing [Baumol (1967), Ngai and Pissarides

(2007)].6

The view that agricultural productivity can generate manufacturing growth was challenged by

scholars studying industrialization experiences in open economies. These scholars argued that high

agricultural productivity can retard industrial growth as labor reallocates towards the comparative

advantage sector [Mokyr (1976), Field (1978) and Wright (1979)]. Their ideas were formalized by

Matsuyama (1992) who showed that the demand and supply channels are not operative in a small

open economy that faces a perfectly elastic demand for both goods at world prices. The open

economy model we present in this paper differs from Matsuyama’s in one key dimension. In his

model, there is only one input to production thus technical change is, by definition, Hicks-neutral.

In our model there are two factors, land and labor, and the two are complements in agricultural

production. Thus technical change can be factor-biased. In this setting, a new prediction emerges:

when technical change is labor augmenting, an increase in agricultural productivity leads to a

reallocation of labor towards the industrial sector even in open economies.7

Our work also builds on the empirical literature studying the links between agricultural pro-

ductivity and economic development.8 The closest precedent to our work is Foster and Rosenzweig

(2004, 2008) who study the effects of the adoption of high-yielding-varieties (HYV) of corn, rice,

sorghum, and wheat during the Green Revolution in India. To guide empirical work, they present

a model in which agricultural and manufacturing goods are tradable and technical change is Hicks-

neutral. Consistent with their model, they find that villages with higher improvements in crop

yields experienced lower manufacturing growth. Our findings are in line with theirs in the case

of maize, for which technical change is land-augmenting. However, we find the opposite effects

6Another mechanism generating a reallocation of labor from agriculture to manufacturing is faster growth in the
relative supply of one production factor when there are differences in factor intensity across sectors [See Caselli and
Coleman (2001), and Acemoglu and Guerrieri (2008)]. For a recent survey of the structural transformation literature
see Herrendorf, Valentinyi and Rogerson (2013).

7This prediction rests on the assumptions that land and labor are strong complements in agricultural production,
and land is only used in the agricultural sector. This last assumption is not necessary to obtain the prediction. To
see this, refer to the general discussion of the effects of technical change in an open economy with two goods and two
factors in Findlay and Grubert (1959).

8This literature is surveyed by Syrquin (1988) and Foster and Rosensezweig (2008).
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in the case of soy, for which technical change is labor saving. Thus, relative to theirs, our work

highlights the importance of the factor-bias of technical change in shaping the relationship between

agricultural productivity and industrial development in open economies.

Our model is related to the literature on the Dutch Disease: Corden and Neary (1982) and

Krugman (1987). In particular, Corden and Neary consider a three-sector open economy model

with non-traded goods. One of the traded sectors is extractive and experiences a boom, which

leads to de-industrialization and an expansion of the service sector. We build on their distinction

between two effects of the boom: the spending effect and the resource movement effect, which we

call the demand and supply effects. Our setting differs in that we consider labor-saving technical

change which reduces the marginal product of labor in the booming sector, agriculture. Thus, in

our model the net effect of agricultural technical change on industrialization depends on the relative

strength of these effects.

Our research also connects to the literature studying the role of manufacturing in economic

development. This literature has shown that a reallocation of labor into manufacturing can increase

aggregate productivity: first, when labor productivity is lower in agriculture than in the rest of the

economy [Gollin, Parente and Rogerson (2002), Lagakos and Waugh (2013) and Gollin, Lagakos

and Waugh (2014)]; second, when the manufacturing sector is characterized by economies of scale

generated by on-the-job accumulation of human capital such as learning-by-doing [Krugman (1987),

Lucas (1988), Matsuyama (1992)].

Finally, our work is related to recent empirical papers studying the effects of agricultural pro-

ductivity on urbanization [Nunn and Qian (2011)], the links between structural transformation and

urbanization [Michaels, Rauch and Redding (2012)], the effects of agriculture on local economic

activity [Hornbeck and Keskin (2012)], and the role of out-migration from rural areas in favoring

the adoption of capital-intensive agricultural technologies [Hornbeck and Naidu (2014)].

The remaining of the paper is organized as follows. Section 2 gives background information

on agriculture in Brazil. Section 3 presents the theoretical model. Section 4 describes the data.

Section 5 presents the empirical strategy and results. Section 6 shows a set of robustness checks on

our main results. Section 7 concludes.

2 Agriculture in Brazil

In this section we provide background information on recent technological developments in Brazilian

agriculture. In particular, we focus on two new agricultural technologies for the cultivation of soy

and maize. The first is the use of genetically engineered (GE) seeds in soy cultivation. The second
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is the introduction of a second harvesting season in maize during the same agricultural year, which

requires the use of advanced cultivation techniques.

2.1 Technical Change in Soy: Genetically Engineered Seeds

The main advantage of GE soy seeds relative to traditional seeds is that they are herbicide resistant,

which facilitates the use of no-tillage planting techniques.9 The planting of traditional seeds is

preceded by soil preparation in the form of tillage, the operation of removing the weeds in the

seedbed that would otherwise crowd out the crop or compete with it for water and nutrients.

In contrast, planting GE soy seeds requires no tillage, as the application of herbicide selectively

eliminates all unwanted weeds without harming the crop. As a result, GE soy seeds can be applied

directly on last season’s crop residue, allowing farmers to save on production costs since less labor

is required per unit of land to obtain the same output.10

The first generation of GE soy seeds, the Roundup Ready (RR) variety, was commercially

released in the U.S. in 1996 by the agricultural biotechnology firm Monsanto. In 1998, the Brazilian

National Technical Commission on Biosecurity (CTNBio) authorized Monsanto to field-test GE

soy in Brazil for 5-years as a first step before commercialization. Finally, in 2003, the Brazilian

government legalized the use of GE soy seeds.11 Prior to legalization, smuggling of GE soy seeds

from Argentina was detected since 2001 according to the Foreign Agricultural Service of the United

States Department of Agriculture (USDA, 2001).

The new technology spread quickly: in 2006 GE seeds were planted in 46.4% of the area

cultivated with soy in Brazil, according to the last Agricultural Census (IBGE, 2006, p.144). In

the following years the technology continued spreading to the point that, according to the Foreign

Agricultural Service of the USDA, it covered 85% of the area planted with soy in Brazil by the

9Genetic engineering (GE) techniques allow a precise alteration of a plant’s traits. This allows to target a single
plant’s trait, facilitating the development of plant characteristics with a precision not attainable through traditional
plant breeding. In the case of herbicide resistant GE soy seeds, soy genes were altered to include those of a bacteria
that was herbicide resistant.
10GE soybeans seeds allow farmers to adopt a new set of techniques that lowers labor requirement for several

reasons. First, since GE soybeans are resistant to herbicides, weed control can be done more flexibly. Herbicides can
be applied at any time during the season, even after the emergence of the plant. Second, GE soybeans are resistant
to a specific herbicide (glyphosate), which needs fewer applications: fields cultivated with GE soybeans require an
average of 1.55 sprayer trips against 2.45 of conventional soybeans (Duffy and Smith, 2001; Fernandez-Cornejo et al.,
2002). Third, no-tillage production techniques require less labor. This is because the application of chemicals needs
fewer and shorter trips than tillage. In addition, no-tillage allows greater density of the crop on the field (Huggins
and Reganold, 2008). Finally, farmers that adopt GE soybeans report gains in the time to harvest (Duffy and Smith,
2001). These cost savings might explain why the technology spread fast, even though experimental evidence in the
U.S. reports no improvements in yield with respect to conventional soybeans (Fernandez-Cornejo and Caswell, 2006)
11 In 2003, Brazilian law 10.688 allowed the commercialization of GE soy for one harvesting season, requiring farmers

to burn all unsold stocks after the harvest. This temporary measure was renewed in 2004. Finally, in 2005, law 11.105
—the New Bio-Safety Law —authorized production and commercialization of GE soy in its Roundup Ready variety
(art. 35).
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2011-2012 harvesting season (USDA, 2012).

The timing of adoption of GE soy seeds coincides with an increase in labor productivity in soy

production and a fast expansion in the area planted with soy in Brazil. Figure 1(a) documents

the evolution of soy production per worker between 1980 and 2011. As the Figure shows, labor

productivity in soy production has been increasing in Brazil since the early 1990s, and accelerated

sharply in the early 2000s: soy production per worker went from 100 tonnes per worker in 2003

to around 300 tonnes per worker in 2011. Labor productivity growth was accompanied by an

expansion in area planted with soy. Table 1 reports land use by agricultural activity according to

the 1996 and 2006 Agricultural Censuses. It shows that the area cultivated with seasonal crops

increased by 10.4 million hectares between 1996 and 2006.12 Out of these, 6.4 million hectares were

converted to soy cultivation. Similarly, Figure 1(b) shows that the area planted with soy has been

growing since the 1980s, and experienced a sharp acceleration in the early 2000s.13

The adoption of GE soy can affect labor demand in the agricultural sector through two channels:

the within-crop and the across-crop effects. The first effect is due to a reduction in the amount

of agricultural workers per hectare required to cultivate soy: labor intensity of soy production fell

from 29 workers per 1000 hectares in 1996 to 18 workers per 1000 hectares in 2006 (Table 2). The

timing of this change in labor intensity is illustrated by Figure 1(c), which shows a sharp increase

in the area planted per worker in soy production in the early 2000s.14 This reduction in labor

intensity entirely offset the potential increase in labor demand for soy due to the expansion in

the area planted: Figure 1(d) shows that employment in soy production experienced a constant

decrease during the period under study.

In turn, the across-crop effect is due to the expansion of soy cultivation over areas previously

devoted to other crops. This effect reduces the labor intensity of production in the agricultural sec-

tor because soy production is one of the least labor-intensive agricultural activities: its production

12Seasonal crops are those produced from plants that need to be replanted after each harvest, such as soy and
maize.
13Yearly data on area planted are from the CONAB survey. This is a survey of farmers and agronomists conducted

by an agency of the Brazilian Ministry of Agriculture to monitor the annual harvests of major crops in Brazil (see
Section A2 of the Appendix for a detailed description). We use data from the CONAB survey purely to illustrate the
timing of the evolution of aggregate agricultural outcomes during the period under study. In the empirical analysis,
instead, we rely exclusively on data from the Agricultural Censuses which covers all farms in the country and it is
representative at municipality level.
14Figure 1(c) displays yearly data on area planted with soy from the CONAB survey and yearly data on employment

in soy production from the PNAD survey. Table 2 instead is based on data on area planted and employment from
the Agricultural Censuses of 1996 and 2006. Notice that the decrease in labor intensity in soy production between
1996 and 2006 implied by Figure 1(c) is larger than the one showed in Table 2 and reported in the text. This is
because labor intensity in soy production in Table 2 is computed as total land in farms whose main activity is soy
divided by total number of workers in farms whose main activity is soy according to the Agricultural Census, which
tends to overestimate the number of workers in soy whenever farms whose main activity is soy produce also other
crops (which are, on average, more labor intensive). See section A2 of the Appendix for a detailed description of the
data sources used in this section.

8



required 18 workers per 1000 hectares while seasonal crops and permanent crops require 84 and

127, respectively (Table 2).

2.2 Technical Change in Maize: Second Harvesting Season

During the last two decades Brazilian agriculture experienced also important changes in maize

cultivation. Maize used to be cultivated as soy, during the summer season that takes place between

August and December. At the beginning of the 1980s a few farmers in the South-East region of

Brazil started producing maize after the summer harvest, between March and July. This second

season of maize cultivation spread across Brazil, where it is now known as milho safrinha (small-

harvest maize).

Cultivation of a second season of maize requires the use of modern cultivation techniques. First,

more intensive land-use removes nitrogen from the soil, which needs to be replaced by fertilizers.

Second, the planting of a second crop requires careful timing, as yields drop considerably due to

late planting. Third, herbicides are used to remove residuals from the first harvest on time to plant

the second crop. Finally, the second season crop needs to be planted one month faster than the

first, which usually requires higher mechanization.15

Figure 1(e) documents the evolution of the area cultivated with maize since 1980. The figure

shows that, although the total area devoted to maize has increased only slightly, the area devoted

to second season maize has expanded steadily since the beginning of the 1990s.16

The introduction of a second harvesting season for maize can affect labor demand in the agri-

cultural sector through the within-crop and across-crop effects. The first effect is directly due to

the introduction of a second harvest which raises labor demand relative to the benchmark of one

maize harvest. The second effect is due to the expansion of maize over areas previously dedicated

to less-labor intensive activities, which also tends to increase labor demand. According to the 1996

Agricultural Census, maize cultivation is more labor intensive than the main agricultural activities

in Brazil. In this year, labor intensity in maize production was 100 workers per 1000 hectares,

above the labor intensity of soy, other cereals and cattle ranching, reported in Table 2.17

15For a more detailed discussion, see EMBRAPA (2006) and CONAB (2012).
16Data on area cultivated with maize broken down by the season of harvest of maize is publicly available only

at the aggregate level. For this reason in section 5, when we study municipality-level data, we will not be able to
distinguish between maize cultivation in each seasons.
17 Information on the area and number of workers employed in farms whose main activity is maize production is

publicly available only for the Agricultural Census of 1996. In Table 2 we therefore report labor intensity for the "all
cereals" category, which we also observe in 2006 and includes rice, wheat, maize and other cereals. For a measure of
maize labor intensity under advanced cultivation techniques, we refer to data for the U.S. The USDA Agricultural
Resources Management Survey (ARMS), reports that maize is more labor intensive than soy: labor cost of maize
cultivation in 2001 and 2005 were on average 1.8 and 1.4 times higher than the labor cost for soy cultivation.

9



3 Model

In this section we present a simple model to illustrate the effects of factor-biased technical change

on structural transformation in open economies. We consider a region that behaves as a small

open economy in the sense that goods are freely tradable across regions but production factors are

immobile. There are two sectors, agriculture and manufacturing, and two production factors, land

and labor.

3.1 Setup

This small open economy has a mass one of residents, each endowed with L units of labor. There

are two sectors, manufacturing and agriculture, both of which produce tradable goods. Production

of the manufactured good requires only labor and labor productivity in manufacturing is Am. As

a result, Qm = AmLm, where Qm denotes production of the manufactured good and Lm denotes

labor allocated to the manufacturing sector. Production of the agricultural good requires both

labor and land, and takes the CES form:

Qa = AN

[
γ (ALLa)

σ−1
σ + (1− γ) (ATTa)

σ−1
σ

] σ
σ−1

(1)

where Qa denotes production of the agricultural good, the two production factors are labor (La) and

land (Ta), AN is Hicks-neutral technical change, AL is labor-augmenting technical change and AT

is land-augmenting technical change. The parameter σ > 0 captures the elasticity of substitution

between land and labor, and γ ∈ (0, 1). The production function described by equation (1) implies

the following marginal product of labor:

MPLa = ANALγ

[
γ + (1− γ)

(
ATT

ALLa

)σ−1
σ

] 1
σ−1

. (2)

This expression shows that Hicks-neutral and land-augmenting technical change increase the mar-

ginal product of labor. However, labor augmenting technical change generates two opposing effects

on the marginal product of labor. First, increases in AL imply that each worker is more produc-

tive, as can be seen in the first term of the equation. Second, a larger AL generates a reduction

in the amount of land per unit of labor in effi ciency units (ATT/ALLa), which tends to reduce the

marginal product of labor. This second effect is larger when land and labor are poor substitutes.

Thus, the relative strength of the two opposing effects depends on the value of the parameter σ.

In particular, ∂MPLa/∂AL < 0 when the elasticity of substitution is smaller than the land share

of output, σ < 1− Γ ≡ TaMPTa/Qa, as shown in the web appendix. In what follows, we say that
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technical change is strongly labor-saving when this condition is satisfied.18 ,19

3.2 Equilibrium

We consider a small open economy that trades with a world economy where the relative price of

the agricultural good is Pa/Pm = (Pa/Pm)∗ . Profit maximization implies that the value of the

marginal product of labor must equal the wage in both sectors, thus:

PaMPLa = w = PmMPLm. (3)

As a result, in equilibrium, the marginal product of labor in agriculture is determined by interna-

tional prices and manufacturing productivity: MPLa = (Pm/Pa)
∗Am. This condition and the land

market clearing condition (Ta = T ) determine the equilibrium allocation of labor:

L∗a =
ATT

AL

{
γ

1− γ
1− Γ∗

Γ∗

} σ
1−σ

, (4)

where the equilibrium labor share is Γ∗ = γσ (PmAm/PaANAL)1−σ . In turn, the equilibrium level

of employment in manufacturing, L∗m, can be obtained using the labor market clearing condition,

Lm + La = L. Once L∗m and L∗a are determined output in each sector can be found using the

production functions described in section 3.1. See Appendix for detailed derivations.

3.3 Technological Change and Structural Transformation

In this section we assess the response of agricultural and manufacturing employment to three types

of technological change: labor-augmenting, land-augmenting and Hicks-neutral.

Labor-augmenting technical change

The effect of labor augmenting technical change on agricultural employment depends on whether

the elasticity of substitution is smaller than the equilibrium land share of agricultural production

(σ < 1−Γ∗). When this condition is satisfied, we say that land and labor are strong complements.

a) Land and labor are strong complements: ∂L∗a
∂AL

< 0 and ∂L∗m
∂AL

> 0.

An increase in AL generates a reallocation of labor from agriculture to manufacturing.This is be-

cause if the elasticity of substitution between land and labor is smaller than the land share of

18Note that, because the production function takes the C.E.S. form, the land share of output is a function of the
equilibrium level of employment in agriculture. In particular, in the relevant case where σ < 1 the land share is
increasing on the level of agricultural employment. As a result, this condition is more likely to be satisfied when the
equilibrium level of agricultural employment is high.
19See Neary (1981) and Acemoglu (2010) for more general discussions of the properties of technical change that

reduces the marginal product of labor. We follow Acemoglu in using the term strongly labor saving.

11



output, labor-augmenting technical change induces a reduction in the marginal product of labor

in agriculture. In equilibrium, the marginal product of labor in agriculture is given by interna-

tional prices and manufacturing productivity, thus it must stay constant when AL increases. Thus,

employment in agriculture must fall to increase the marginal product of labor to its equilibrium

level.

Proof. See Appendix.

b) Land and labor are not strong complements: ∂L
∗
a

∂AL
> 0 and ∂L∗m

∂AL
< 0.

An increase in AL generates a reallocation of labor from manufacturing to agriculture. This is

because if the elasticity of substitution is larger than the land share of output, labor-augmenting

technical change induces an increase in the marginal product of labor in agriculture.

Land-augmenting technical change: ∂L
∗
a

∂AT
> 0 and ∂L∗m

∂AT
< 0.

An increase in AT generates a reallocation of labor from manufacturing to agriculture. To see why

this is the case, note that land-augmenting technical change rises the marginal product of labor in

agriculture (see equation 2).

Hicks-neutral technical change: ∂L
∗
a

∂AN
> 0 and ∂L∗m

∂AN
< 0.

An increase in AN generates a reallocation of labor from manufacturing to agriculture. To see why

this is the case, note that a Hicks-neutral increase in agricultural productivity rises the marginal

product of labor in agriculture (see equation 2).

3.4 Empirical Predictions

In the following section, we test the predictions of the model by studying the simultaneous expansion

of two new agricultural technologies: GE soy and second-harvest maize. In the case of soy, the

advantage of GE seeds relative to traditional ones is that they are herbicide resistant, which reduces

the need to plow the land. As a result, this new technology requires less labor per unit of land

to yield the same output and can be characterized as labor-augmenting technical change. In the

case of maize, farmers started introducing advanced cultivation techniques and inputs which permit

to grow two crops a year, effectively increasing the land endowment. Thus, this new technology

can be characterized as land-augmenting technical change. In our empirical analysis, we quantify

the effects of these two types of technical change on observable variables in the agricultural and

manufacturing sector and test whether they display the sign patterns predicted by the model.

We analyze data aggregated at the municipality level, which is our unit of analysis. As a result,

we interpret the production functions in the model as describing the aggregate level of agricultural
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and manufacturing production (Qa and Qm) in a given municipality. In addition, the agricultural

census reports information on employment aggregated across agricultural activities. Thus, we

interpret equation (1) as describing the aggregate production function for the agricultural sector,

where PaQa is the value of agricultural output, La is agricultural employment and Ta is land in

agricultural establishments. We trace the effects of the two new agricultural technologies on these

directly observed variables to test the following predictions of the model regarding the effects of

technical change.

Prediction 1. If land and labor are strong complements in production, labor augmenting technical

change in agriculture (AL) :

(a) increases the value of output per worker, P
∗
aQ
∗
a

L∗a
;

(b) reduces the labor intensity of production, L
∗
a
T ;

(c) reduces the employment share of agriculture, L
∗
a
L ;

(d) increases the employment share of manufacturing,L
∗
m
L .

Proof. See Appendix.

Prediction 2. Land augmenting technical change in agriculture (AT ) :

(a) does not change the value of output per worker;

(b) increases the labor intensity of production;

(c) increases the employment share of agriculture;

(d) reduces the employment share of manufacturing.

Proof. See Appendix.

3.5 Services

In this section we extend the model by including a third sector which produces non-traded services.

The purpose of this extension is to understand to what extent the predictions of the model discussed

above are modified by the presence of non-traded goods. A detailed analysis of the model with

services and all derivations are contained in the appendix.

We assume that the production function for services uses only labor and displays constant

returns to scale. As a result, Qs = AsLs, where Qs denotes production of services and Ls denotes

labor allocated to the service sector. Note that because services are non-tradable, production can

no longer be determined independently of consumption. Thus, we specify preferences and factor

ownership. Consumers have the following Cobb-Douglas preferences over the three goods:

U(ca, cm, cs) = cαaa cαmm cαss , (5)
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where αa+αm+αs = 1.20 There are-two types of agents in the economy: L workers, each endowed

with one unit of labor; and T land-owners, each endowed with one unit of land. We assume that

workers reside in the same region where they work. In contrast, land owners can reside in any

region. We denote by θ the share of land owners residing in the same region where their land is

located. Then, aggregate service consumption in a region is Cs = cs,L L + cs,T θT, where cs,L is

the consumption of workers and cs,T the consumption of land-owners.21 ,22

In this setting, equilibrium employment in agriculture is the same as in the model without non-

traded services, given by equation (4). This is because wages are set by the value of the marginal

product of labor in manufacturing. Thus, the effects of agricultural technical change on agricultural

employment are identical to the ones in the model without services. We call them the supply-side

effects of technical change: ∂L∗a
∂Ai

for i = N,T, L.

In turn, equilibrium employment in services can be written as:

L∗s = αsL+ αsθ
r∗

w∗
T. (6)

where r∗ is the equilibrium land rent.23 Note that workers spend a constant share of their labor

endowment on services (αsL). This is because the service sector uses only labor for production.

Thus, any increase in wages has both an income and substitution effect on the demand for services

by workers. The income effect increases their demand for services as their labor endowment is more

valuable. The substitution effect reduces the demand for services as their price, the wage, increases.

When preferences are Cobb-Douglas both effects have the same magnitude and cancel-out.24 As a

result, agricultural technical change can only affect the demand for services through its effect on

the consumption of land owners: αsθ r
∗

w∗T. In turn, agricultural technical change always increases

land rents. Thus, the demand for services and employment in the service sector increase. We call

20Our use of a homothetic utility function follows the findings in Herrendorf, Rogerson and Valentinyi (2013). They
show that a homothetic utility function where the elasticity of substitution across sectors is smaller than one provides
the best fit to the Postwar U.S. data when sectoral consumption data is measured in terms of value added. Because
we use data on employment to measure structural transformation, our analysis tracks value added better than final
goods consumption. As a result we use a homothetic utility function. However, we assume that the elasticity of
substitution across sectors is equal to one to make the model simpler. We discuss below how the predictions of our
model would be modified if this elasticity was smaller than one.
21Note that θ is the share of services consumption of land owners that is spent locally. Thus, an alternative

interpretation is that land-owners reside locally but consume some services in other regions.
22Note that we are not taking into account the local consumption of land owners who reside in the region under

consideration but own land in other regions. The reason for this omission is that, in the model, their demand for
services would not be affected by technical change in the region where they live but in the region where they own
land.
23See appendix for detailed derivations and closed form solutions for r∗ and L∗s .
24 If, instead of Cobb-Douglas, preferences were homothetic with an elasticity of substitution smaller than one, as

suggested by Herrendorf et al. (2013), the income effect would dominate. Thus, the demand for services from workers
would be increasing in wages.
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this the demand side effects of technical change: ∂L∗s
∂Ai

for i = N,T, L.

When technical change is Hicks-neutral or land-augmenting, both the supply-side and demand-

side effects reduce manufacturing employment. However, when technical change is strongly labor-

saving each effect moves manufacturing employment in opposite directions. On the one hand, the

supply side effect releases labor from agriculture, increasing the labor supply for manufacturing.

On the other hand, the demand-side effect increases labor demand in services, reducing the supply

of labor for manufacturing. Therefore, the net effect on manufacturing employment depends on the

relative strength of each effect. In the appendix, we show that the supply-side effect dominates as

long as σ < (1− Γ∗) (1− αsθ) . Note that because 1− αsθ < 1, this condition is stronger than the

condition required for agricultural technical change to be strongly labor-saving : σ < 1−Γ∗. Thus,

it is satisfied as long as land-owners’s consumption share of local services (αsθ) is not too large.

4 Data

The main data sources are the Agricultural Census, the Population Census, and the FAO Global

Agro-Ecological Zones database. To perform robustness checks we also use manufacturing plant-

level data from the Brazilian Annual Industrial Survey (PIA).25

The Agricultural Census is released at intervals of 10 years by the Instituto Brasileiro de Ge-

ografia e Estatística (IBGE), the Brazilian National Statistical Institute. The empirical analysis

focuses on the last two rounds of the census which have been carried out in 1996 and in 2006.

The Agricultural Census data is collected through direct interviews with the managers of each

agricultural establishment and is made available online by the IBGE aggregated at municipality

level.26 The agricultural variables of interest are the share of agricultural land planted with soy

and maize, the value of production per worker, and labor intensity.27 The last two variables are

aggregated across all agricultural activities. This is because the unit of observation in the census

is the agricultural establishment, and these tend to perform several activities. As a result, it is not

25 In this section we briefly discuss the main data sources and variables of interest. For detailed variable definition
see Section A4 of the Appendix.
26Borders of municipalities often change, thus, to make them comparable across time, IBGE has defined Área

Mínima Comparável (AMC), smallest comparable areas, which we use as our unit of observation. The average size of
an AMC in terms of population is 39,858 inhabitants, while the average size of a municipality is 30,833 inhabitants
(data from the 2000 Population Census). In terms of area, the average AMC has an area of around 2,000 square
kilometers, while the average municipality has an area of 1,500 square kilometers.
27The measure of agricultural employment used to construct the value of production per worker and labor intensity

includes: employees, family members employed in farm activities, sharecroppers and people who reside in the farm and
perform agricultural activities without a formal contract. There are two potential problems with this definition. The
first is potential double counting of seasonal workers that work in more than one farm during the same calendar year.
The second is that this variable does not include employees hired by service provider companies that are contracted
by the farm to perform agricultural activities. See section A4 of the Appendix for a more detailed description of this
variable.
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possible to obtain a measure of employment by crop.

We use the Brazilian Population Census to construct measures of the sectoral composition

of employment and average wages. The Population Census is conducted every 10 years and it

covers the entire Brazilian population. We use data from the last two rounds of the census (2000

and 2010) so to observe the variables of interest before and after the legalization of the GE soy

seeds.28 Data on the sector of employment is collected through a special survey that is administered

to a representative sample of the Brazilian population within narrow cells defined by geographical

district, sex, age and urban or rural residence. The variables we focus on are the sector in which the

person was working during the previous week and its wage. 29 For each municipality, we compute

employment shares as the number of workers in each sector divided by total employment.30

We obtain an exogenous measure of technological change in agriculture by using estimates of

potential soy and maize yields across geographical areas of Brazil from the FAO-GAEZ database.

These yields are calculated by incorporating local soil and weather characteristics into a model

that predicts the maximum attainable yields for each crop in a given area. In addition, the data-

base reports potential yields under different technologies or input combinations. Yields under the

low technology are described as those obtained planting traditional seeds, no use of chemicals nor

mechanization. Yields under the high technology are obtained using improved high yielding vari-

eties, optimum application of fertilizers and herbicides and mechanization.31 Maps displaying the

resulting measures of potential yields for soy and maize under each technology are contained in

Appendix Figures A2 to A5.

We construct a measure of technical change in soy or maize production for each municipality by

deducting the average potential yield under low inputs from the average potential yield under high

inputs. Figure 2 illustrates the resulting measure of technical change in soy at the municipality

level, while Figure 3 shows the same measure at the micro-region level.

Finally, we use data from the Pesquisa Industrial Anual (PIA), the Annual Industrial Survey

conducted by the IBGE. We focus on firms operating in the manufacturing sector32 and use yearly

data from 1996 to 2007. All firms with more than 5 employees registered in the national firm registry

(CEMPRE, Cadastro Central de Empresas) are eligible for this survey. The survey is constructed

using two strata: the first includes a sample of firms having between 5 and 29 employees (estrato

28To perform some of the robustness checks we also use the 1980 and 1991 Population Censuses.
29The sector classification is comparable across the census of 2000 and 2010 and it is the CNAE Domiciliar 1.0.

The broader categories of CNAE Domiciliar 1.0 follow the structure of the ISIC classification version 3.1.
30We restrict the sample to workers aged between 16 and 55 years old.
31See section A4 of the Appendix for a more detailed definition of potential yields under different input combina-

tions.
32 Identified by the CNAE sector codes 15 to 37
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amostrado) and it is representative at the sector and state level. The second includes all firms

having 30 or more employees (estrato certo). We construct measures of total employment and

average wages that are representative at municipality level by focusing on firms with 30 or more

employees.

5 Empirics

In this section we study the effects of the adoption of new agricultural technologies on structural

transformation in Brazil. For this purpose, we first study the effect of the adoption of GE soy and

second season maize on agricultural productivity and the factor intensity of agricultural production.

This first step permits to characterize the factor-bias of technical change. Next, we assess the impact

of technical change on the allocation of labor across sectors.

In the following section we report simple correlations between the expansion of the area planted

with soy and maize and agricultural and industrial labor market outcomes in each municipality.

As discussed above, these correlations are not informative about the causal relation between these

variables. Thus, in section 5.2, we present an empirical strategy that attempts to establish the

direction of causality by exploiting the timing of adoption and the differential impact of the new

technology on potential yields across geographical areas.

5.1 Basic Correlations in the Data

We start by documenting how the expansion of soy and maize cultivation during the 1996-2006

period relates to changes in agricultural production and industrial employment. These basic corre-

lations in the data attempt to answer the following question: did areas where soy (maize) expanded

experience faster (slower) structural transformation? In section 5.1.1 we present a set of OLS esti-

mates of equations relating agricultural outcomes to the percentage of farm land cultivated with soy

and maize. In the following section 5.1.2 we present the corresponding estimates for manufacturing

outcomes.

The basic form of the equations to be estimated in this section is:

yjt = αj + αt + β

(
Soy Area

Agricultural Area

)
jt

+ γ

(
Maize Area

Agricultural Area

)
jt

+ εjt (7)

where j indexes municipalities, t indexes time, αj are municipality fixed effects and αt are time

fixed effects. yjt is an outcome that varies across municipalities and time and
Soy (Maize) Area
Agricultural Area is the

total area reaped with soy (maize) divided by total farm land.33 We observe agricultural outcomes
33Total farm land includes areas devoted to crop cultivation (both permanent and seasonal crops), animal breeding
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for the census years 1996 and 2006. Because fixed effects and first difference estimates are identical

when considering only two periods, we estimate (7) in first differences:

∆yj = ∆α+ β ∆

(
Soy Area

Agricultural Area

)
j

+ γ ∆

(
Maize Area

Agricultural Area

)
j

+ ∆εj (8)

5.1.1 Agricultural Outcomes: Productivity, Labor Intensity and Employment Share

Table 4 reports OLS estimates of equation (8) for three agricultural outcomes. The first is labor

productivity, measured as the value of output per worker in agriculture.The second is labor intensity,

measured as the number of workers per unit of land in agriculture. The third outcome is the

employment share of agriculture.

The first two columns of Table 4 show that in areas where soy cultivation expanded, the value

of agricultural production per worker increased and labor intensity in agriculture decreased. These

empirical findings are consistent with the characterization of soy technical change as strongly labor-

saving. The estimated coeffi cients imply that a 1 percentage point increase in soy area share

corresponds to a 0.58 percent increase in labor productivity, and a 0.48 percent reduction in labor

intensity. In contrast, in areas where maize cultivation expanded labor intensity increased. This

evidence is consistent with our characterization of technical change in maize as land-augmenting.

The estimated coeffi cients imply that a 1 percentage point increase in maize area share corresponds

to a 1.6 percent increase in labor productivity, and a 0.74 percent increase in labor intensity.

Next, we analyze the relationship between the expansion in soy and maize area and sectoral

employment shares. Note that we source information on sectoral employment shares from the

Population Census which reports information for the years 2000 and 2010. Thus, our estimation of

equation (8) relates changes in employment shares between 2000 and 2010 to changes in the area

planted with soy and maize between 1996 and 2006. In both cases the initial year precedes the

timing of legalization of soybean seeds in Brazil (2003), as well as the first date in which smuggling

of GE soy seeds was documented (2001). Column 3 of Table 4 shows that the employment share of

agriculture decreased in places where soy expanded while estimates for maize are not statistically

significant. The estimated coeffi cient implies that a 1 percentage point increase in soy area share

corresponds to a 0.09 percentage point reduction in the agricultural employment share.

The finding that the agricultural employment share fell in areas where soy expanded suggests

that soy technical change is not only labor-augmenting but also strongly labor-saving. In this case,

our model predicts that technology adoption reduces labor demand in agriculture.

and logging.
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5.1.2 Manufacturing Outcomes: Employment Share, Total Employment and Wages

We now turn to the question of whether manufacturing employment expanded (contracted) in areas

where soy (maize) expanded. Table 5 reports OLS estimates of equation (8) for three manufacturing

sector outcomes: employment share, level of employment, and average wage.

The first column of Table 5 shows that municipalities where soy expanded experienced a faster

increase in the employment share in manufacturing. In contrast, this share remained unchanged

in municipalities where maize expanded. Interestingly, in areas where soy expanded, not only

the share but also the level of manufacturing employment increased, as shown in column 2. The

estimated coeffi cient on the effect of the expansion of soy cultivation in manufacturing employment

share indicates that municipalities experiencing a 1 percentage point increase in soy area share had

a 0.11 percentage point increase in manufacturing employment share and a 1.05 percent increase

in manufacturing employment.

5.2 The Effect of Agricultural Technological Change on Structural Transforma-

tion

In this section we provide empirical evidence on the causal effects of the adoption of new agricultural

technologies on industrial development in Brazil. The basic correlations in the data reported in

the previous section show that areas where soy expanded experienced an increase in output per

worker and a reduction in labor intensity in agriculture while industrial employment expanded.

These findings are consistent with the sequence of events predicted by the model, namely that the

adoption of strongly labor-saving agricultural technologies reduces labor demand in the agricultural

sector and induces a reallocation of labor towards the industrial sector. However, these correlations

are not informative about the direction of causality. For example, these correlations are consistent

with the following alternative sequence of events: productivity growth in the industrial sector

increases labor demand and wages, inducing agricultural firms to switch to less labor-intensive

crops, like soy. In this section we attempt to establish the direction of causality.

Our empirical strategy relies on the assumption that goods can be traded across geographical

areas of Brazil but labor markets are local. We investigate whether exogenous shocks to local

agricultural productivity lead to changes in the size of the local industrial sector. Thus, our ideal

unit of observation would be a region containing a city and its hinterland with limited migration

across regions. We attempt to approximate this ideal using municipalities as our main level of

geographical aggregation. This approach is adequate for municipalities in the interior of the country,

which typically include both rural and urban areas. However, municipalities tend to be mostly urban
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in more densely populated coastal areas. To address this concern, we show that our estimates are

robust to using a larger unit of observation: micro-regions. Figures 2 and 3 contain maps of Brazil

displaying both levels of aggregation.34

We propose to identify the causal effect the new technologies on structural transformation by

exploiting the timing of adoption and the differential impact of the new technology on potential

yields across geographical areas. Let us first consider whether the timing of adoption is likely to be

exogenous with respect to developments in the Brazilian economy. GE soy seeds were commercially

released in the U.S. in 1996, and legalized in Brazil in 2003. Given that the seeds were developed

in the U.S., their date of approval for commercialization in the U.S., 1996, is arguably exogenous

with respect to developments in the Brazilian economy. In contrast, the date of legalization, 2003,

responded partly to pressure from Brazilian farmers. In addition, smuggling of GE soy seeds across

the border with Argentina is reported since 2001. Thus, in our empirical analysis we would ideally

compare outcomes before and after 1996. This is possible when variables are sourced from the

Agricultural Census. For variables sourced from the Population Census we compare outcomes before

and after 2000. Because this year predates both legalization and the first reports of smuggling, the

timing can still be considered exogenous.

Second, the new technology had a differential impact on potential yields depending on soil and

weather characteristics. Thus, we exploit these exogenous differences in potential yields across

geographical areas as our source of cross-sectional variation in the intensity of the treatment. To

implement this strategy, we need an exogenous measure of potential yields for soy, which we obtain

from the FAO-GAEZ database. These potential yields are estimated using an agricultural model

that predicts yields for each crop given climate and soil conditions. As potential yields are a func-

tion of weather and soil characteristics, not of actual yields in Brazil, they can be used as a source of

exogenous variation in agricultural productivity across geographical areas. Crucially for our analy-

sis, the database reports potential yields under different technologies or input combinations. Yields

under the low technology are described as those obtained using traditional seeds and no use of

chemicals, while yields under the high technology are obtained using improved seeds, optimum ap-

plication of fertilizers and herbicides and mechanization. Thus, the difference in yields between the

high and low technology captures the effect of moving from traditional agriculture to a technology

that uses improved seeds and optimum weed control, among other characteristics. We thus expect

this increase in yields to be a good predictor of the profitability of adopting herbicide-resistant GE

soy seeds.

34Micro-regions are groups of several municipalities created by the 1988 Brazilian Constitution and used for sta-
tistical purposes by IBGE.

20



More formally, our basic empirical strategy consists in estimating the following equation:

yjt = αj + αt + β Asoyjt + εjt (9)

where yjt is an outcome that varies across municipalities and time, j indexes municipalities, t

indexes time, αj are municipality fixed effects, αt are time fixed effects and A
soy
jt is equal to the

potential soy yield under high inputs from 2003 onwards and to the potential soy yield under low

inputs in the years before 2003. Asoyjt can be thought of as the empirical counterpart of the labor

augmenting technical change AL presented in our model.

In the case of agricultural outcomes, our period of interest spans the ten years between the

last two censuses which took place in 1996 and 2006. Similarly, in the case of sectoral employment

shares and manufacturing outcomes, our period of analysis spans the ten years between the last

two population censuses which took place in 2000 and 2010. We thus estimate a first-difference

version of equation (9):

∆yj = ∆α+ β∆Asoyj + δ Ruralj,1991 + ∆εjt (10)

where the outcome of interest, ∆yj is the change in outcome variables between the last two census

years; ∆Asoyj is the potential yield of soy under the high technology minus the potential yield of

soy under the low technology. Figure 2 contains a map of Brazilian municipalities displaying this

measure of technical change. Additionally, we include a control for the share of rural population in

1991 to allow for differential trends for municipalities with different initial urbanization rates. This

is important because, as mentioned above, coastal municipalities tend to have higher urbanization

rates and there were migration flows from rural to urban areas during the period under study.35

In the case of maize, we follow a similar empirical strategy. However, it is important to note that

the cultivation techniques necessary to introduce a second harvesting season were developed within

Brazil. Thus, the timing of its expansion can not be considered exogenous to other developments in

the Brazilian economy. Nevertheless, to the extent that the diffusion of this new technology across

space depends on exogenous local soil and weather characteristics, the variation in adoption which

we use in our empirical analysis is arguably exogenous to developments in the local industrial

sector. As noted in Section 2, the introduction of a second harvesting eason for maize requires

the use of modern techniques that are intensive in the use of fertilizers, herbicides and tractors.

Then, we expect that the the difference in FAO-GAEZ potential yields between the high and low

35The share of working age population residing in rural areas fell from 22% in 1991 to 14% in 2010.
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technology captures the profitability of introducing a second harvesting season for maize. Thus,

we augment the equation described above to include the following variable: Amaizejt which is equal

to the potential maize yield under high inputs from 2003 onwards and to the potential maize yield

under low inputs in the years before 2003. Amaizejt can be thought of as the empirical counterpart

of the land augmenting technical change AT presented in our model:

∆yj = ∆α+ β∆Asoyj + γ∆Amaizej + δ Ruralj,1991 + ∆εj (11)

where ∆Amaizej is the potential yield of maize under high inputs minus the potential yield of maize

under low inputs.

A potential concern with our identification strategy is that, although the soil and weather char-

acteristics that drive the variation in ∆Asoyj and ∆Amaizej across geographical areas are exogenous,

they might be correlated with initial levels of development across Brazilian municipalities. For

example, to the extent that municipalities with heterogeneous initial levels of development experi-

ence different growth paths, our estimates could be capturing differential structural transformation

trends across municipalities. To assess the extent of this potential concern we first compare observ-

able characteristics of municipalities with high and low levels of our exogenous measure of technical

change in agriculture. Whenever significant differences emerge, we show that our estimates are

stable when we introduce controls for differential trends across municipalities with heterogeneous

initial characteristics.

Table 6 compares municipalities above and below the median change in potential soy yields

(∆Asoyj ) in terms of observable characteristics in 1991, before the introduction of GE soy.36 Mu-

nicipalities above the median potential increase in soy yields are characterized by smaller shares

of rural population and agricultural employment. In addition, they display a larger manufactur-

ing employment share, literacy rate, and income per capita than municipalities below the median.

Thus, in what follows, we always show that our estimates are stable when we introduce controls

for differential trends across municipalities with heterogeneous initial characteristics in our baseline

specification 11, as follows:

∆yj = ∆α+ β∆Asoyj + γ∆Amaizej + δ Ruralj,1991 + θXj,1991 + ∆εj (12)

where Xj,1991 are the set of municipality characteristics discussed above.

In the following subsections we report estimates of the effects of technical change on agricultural

36Municipalities below the median level of ∆Asoyjt experience, on average, a 1.06 tons per hectare increase in
potential soy yield, while those with above the median experience a 2.5 tons per hectare increase.
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production and the sectoral composition of employment. In particular, we report estimates of

the effects of technical change on the expansion of soy and maize cultivation in section 5.2.1; on

agricultural outcomes in section 5.2.2; on manufacturing outcomes in section 5.2.3; and on services

in section 5.2.4.

5.2.1 Agricultural Outcomes: Soy and Maize Expansion

In this section we document the relationship between technical change measured by the increase in

the FAO-GAEZ potential yields of soy and maize, and the actual change in the share of agricultural

land cultivated with each crop. The objective of this exercise is to check whether the change in

potential yields is a good proxy of the profitability of adoption of the new agricultural technologies.

If this is the case, we expect the increase in potential yield of a given crop to predict the actual

expansion in the share of agricultural land cultivated with that crop between 1996 and 2006.

First, we expect that areas with a higher increase in potential soy yields when switching to

the high technology are those adopting genetically engineered soy on a larger scale. Thus, we

start by estimating equation (10) where the outcome of interest, ∆yj is the change in the share

of agricultural land devoted to GE soy between 1996 and 2006. Note that because this share was

zero everywhere in 1996, the change in the area share corresponds to its level in 2006. Estimates

are shown in column 1 of Table 7: the increase in potential soy yield predicts the expansion in GE

soy area as a share of agricultural area between 1996 and 2006. The point estimate remains stable

when controlling for initial municipality characteristics, as shown in column 2.

In columns 3 and 4 of Table 7 we perform a falsification test by looking at whether our measure

of technical change in soy explains the expansion in the area planted with non-GE soy. In this

case, the coeffi cients are negative and significant. This finding supports our claim that the change

in potential soy yield captures the benefits of adopting GE soy vis-à-vis traditional soy seeds.

Next, we jointly analyze the effects of technical change in soy and maize on the area planted

with each crop. For this purpose, we use the broader measure of planted area with soy instead

of GE soy.37 This permits to control for municipality fixed effects by focusing on changes in area

planted rather than levels. We start by estimating equation (12) where the outcome of interest,

∆yj is the change in share of agricultural land devoted to either soy or maize between 1996 and

2006. Estimates are reported in Table 8. First, note that while soy technical change has a positive

effect on the area planted with soy (column 1), it does not have a significant effect on the area

planted with maize (column 4). Similarly, maize technical change only has a positive effect on the

37 In the case of maize, we can only focus on the broader measure of area planted with maize as the publicly available
Agricultural Census data does not contain information on the season of planting of maize at the municipality level.
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area planted with maize (columns 2 and 3). These findings suggest the change in potential yields

when switching to the high technology are good measures of crop-specific technical change in soy

and maize during this period. In addition, both estimates are stable when we add controls for

municipality characteristics. This finding suggests that the differential expansion of these crops

across municipalities is not driven by differential trends across municipalities with different initial

levels of development.

The size of the estimated coeffi cient on ∆Asoyj implies that a one standard deviation increase

in potential soy yield corresponds to an increase in the soy share of agricultural land of 0.26 of a

standard deviation. To understand the magnitude of our estimate, this is an increase of agricultural

land devoted to soy by 877 hectares in response to a 0.85 tons per hectare increase in potential

soy yield. The corresponding estimate for maize implies that a one standard deviation increase in

potential maize yield corresponds to a 0.08 of a standard deviation increase in the maize share of

agricultural land. This means that, in response to a 1.8 tons per hectare increase in potential maize

yield, agricultural land devoted to maize increases by 426 hectares.

5.2.2 Agricultural Outcomes: Productivity, Labor Intensity and Employment Share

In this section we study the effects of agricultural technical change on agricultural production and

employment. Table 9 reports the results of estimating equation (12) when the dependent variables

are three agricultural outcomes: the value of agricultural production per worker, labor intensity,

and the share of workers employed in agriculture.

Estimates reported in columns 1 and 3 indicate that areas where potential soy yields increased

relatively more, experienced a larger increase in the value of agricultural production per worker

and a larger reduction in labor intensity between 1996 and 2006. Next, we study the effect of

agricultural technical change in soy on the agricultural employment share. Estimates reported

in column 5 indicate that areas with a larger increase in potential soy yield experienced a faster

reduction in the agricultural employment share between 2000 and 2010. Note that estimated

coeffi cients are stable or slightly larger when we control for lagged municipality characteristics in

columns 2, 4 and 6. This finding indicates that our estimates are not capturing differential growth

trends across municipalities. Because technical change in soy is characterized as labor augmenting,

these empirical findings are consistent with the predictions of the model for the case where land

are labor are strong complements in agricultural production (see Prediction 1). Thus, they imply

that technical change in soy was strongly labor-saving. Thus, the estimates of the effects of soy

technical change confirm the conclusions drawn from the simple correlations in the data reported

in Table 4.
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The estimates discussed above can be used to compute the elasticity of the agricultural em-

ployment share to changes in agricultural labor productivity due to GE soy adoption. We compute

this elasticity as the ratio of the estimated coeffi cient on ∆Asoyj when the outcome is agricultural

employment share, and the estimated coeffi cient on ∆Asoyj when the outcome is agricultural labor

productivity.38 Using our more conservative estimates, namely those that include all municipality

controls in columns 2 and 6, this ratio is equal to: −0.021/0.131 = −0.158.39 The size of this

elasticity implies that a 1 percent increase in agricultural labor productivity corresponds to a 0.158

percentage points decrease in the agricultural employment share. To illustrate the magnitude of

these estimates, we compute how much of the differences in the speed of structural transformation

across Brazilian regions can soy technical change explain, as follows. Note that a municipality

shocked with a one standard deviation increase in potential soy yield experienced an increase in

agricultural labor productivity of 11 percent, and a corresponding 1.76 percentage points decrease

in agricultural employment share.40 This estimate corresponds to 24 percent of a standard devi-

ation in the change of the agricultural employment share between 2000 and 2010 (7.4 percentage

points, see Table 3).

In the case of maize, the estimated coeffi cients reported in columns 3 and 5 indicate that areas

with higher increase in potential maize yield experienced a larger increase in labor intensity and the

agricultural employment share during the period under study. These findings are consistent with

the predictions of the model for the effects of land-augmenting technical change (See Prediction 2).

In addition, column 1 shows that areas where maize yields increased relatively more experienced

a smaller increase in the value of agricultural output per worker. Our model is too stylized to

capture this feature in the data, which is likely driven by the across-crop effect of technical change:

reallocation of labor towards maize production reduces the value of output per worker in agriculture.

This is because maize production is more labor-intensive than soy production, thus the value of the

average product of labor is lower for maize.41

38Due to the different timing of the Agricultural and Population Censuses, agricultural labor productivity changes
are measured over the period 1996-2006 while employment share changes are measured over the period 2000-2010.
Thus, the elasticity estimates correspond to the effect of 4-year lagged agricultural productivity changes on employ-
ment shares.
39We compute this elasticity in the same way we would compute a Wald estimator in an instrumental variable

setting, where the estimated coeffi cient on ∆Asoyj in column 2 is the first stage coeffi cient, and the estimated coeffi cient
on ∆Asoyj in column 6 is the reduced form coeffi cient.
40The first number is computed multiplying one standard deviation in ∆Asoyj by the estimated coeffi cient on ∆Asoyj

in our specification with municipality controls when the outcome is agricultural labor productivity (column 2 of Table
9): 0.851 × 0.131 = 0.111. The second number is computed multiplying the predicted increase in agricultural labor
productivity for one standard deviation in ∆Asoyj by the elasticity of agricultural employment share to agricultural
labor productivity: 0.111×−0.158 = −0.0176.
41A more formal explanation of the effect of labor reallocation towards maize on the value of agricultural output

per worker follows. Suppose that there are only two crops, soy and maize, and two production factors, land and
labor. In addition, maize production is more labor-intensive than soy. The value of output per worker in agriculture
is defined as PY

L
≡ PmYm+PsYs

L
= PmYm

Lm

Lm
L

+ PsYs
Ls

Ls
L
. In this case, a reallocation of labor towards maize production
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To sum up, the results presented in Table 9 suggest that the introduction of new agricultural

technologies in Brazil had a sizable impact on agricultural labor markets. Areas where the potential

impact of GE soy adoption was higher experienced an increase in the value of agricultural production

per worker, a reduction in the number of workers per unit of land, and a reduction in the employment

share of agriculture. These findings are consistent with the predictions of the model for the effects

of strongly labor-saving technical change. In the case of maize, areas where the potential impact of

the introduction of a second harvesting season was higher experienced an increase in labor intensity

and in the employment share of agriculture. These findings are consistent with the predictions of

the model for the effects of land-augmenting technical change.

5.2.3 Manufacturing Outcomes: Employment Share, Employment and Wages

In this section we study the effect of agricultural technical change on manufacturing employment

and wages. Table 10 reports the results of estimating equation (12) where the dependent variables

are three manufacturing outcomes: the employment share of manufacturing, the level of manufac-

turing employment, and the average wage in manufacturing.

The estimates indicate that areas where potential soy yields increased relatively more, ex-

perienced a larger increase in the manufacturing employment share between 2000 and 2010. A

comparison of point estimates reported in the first row of columns 1 and 2 shows that estimates

are stable when introducing controls for lagged municipality characteristics. In addition, columns

3 and 4 show that not only the share of manufacturing employment increased but also its absolute

level. Finally, columns 5 and 6 show that manufacturing wages fell. These estimates are consistent

with the empirical predictions of the model: technical change in soy is strongly labor-saving thus

reduces labor demand in agriculture, and induces an expansion of the manufacturing sector through

an increase in labor supply and lower wages.

The estimates discussed above can be used to compute the elasticity of manufacturing employ-

ment share to changes in agricultural labor productivity due to GE soy adoption. We compute

this elasticity as in section 5.2.2: we divide the estimated coeffi cient on ∆Asoyj when the outcome

is manufacturing employment share by the estimated coeffi cient on ∆Asoyj when the outcome is

agricultural labor productivity. When we estimate the specification including controls for lagged

municipality characteristics, this ratio is equal to: 0.021/0.131 = 0.161. This elasticity implies that

reduces the value of output per worker in agriculture. This is because if soy production is more land-intensive than
maize production ( Ts

Ls
> Tm

Lm
), the value of the average product of labor is higher for soy (PsYs

Ls
> PmYm

Lm
). To see

why this is the case, note that the zero profit conditions for maize and soy (PiYi = rTi + wLi for i = s,m) imply
PiYi
Li

= r Ti
Li

+ w.
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a 1% increase in agricultural labor productivity corresponds to a 0.161 percentage points increase

in manufacturing employment share. As in the previous section, we illustrate the magnitude of

these estimates by computing how much of the differences in the speed of structural transformation

across Brazilian regions can be explained by technical change in soy. Recall that a municipality

shocked with a one standard deviation increase in potential soy yield experienced an increase in

agricultural labor productivity of 11 percent,42 and a corresponding 1.79 percentage points increase

in manufacturing employment share.43 This estimate corresponds to 31% of a standard deviation

in the change of manufacturing employment share between 2000 and 2010 (5.7 percentage points,

see Table 3).

In the case of maize, the estimates reported in columns 1 and 2 of Table 10 indicate that

areas where potential maize yields increased relatively more experienced a smaller increases in the

manufacturing employment share. In addition, columns 3 and 4 show that not only the share of

manufacturing employment fell but also its absolute level. Finally, columns 5 and 6 show that

manufacturing wages increased. These estimates are consistent with prediction 2 of the model.

These estimates are consistent with the empirical predictions of our model: technical change in

maize is labor-biased thus increases labor demand in agriculture, generating an increase in wages

and a reallocation of labor away from the manufacturing sector.

5.2.4 Services and Other Sectors

In this section we complement our empirical findings with an analysis of the service sector. First,

note that the estimates of the effects of technical change on the agricultural and manufacturing

employment shares discussed above have a similar magnitude. To make this point clearer, we

reproduce them in Table 11, where we also include estimates for the service and other sectors.44

The point estimates of the effect of soy technical change on the agriculture and manufacturing

employment shares have the same size: they are -0.021 and 0.021, respectively, both with a standard

error of 0.002. At the same time, the estimates of the effects on the service and other sectors are very

small and not statistically different from zero. This implies that labor reallocated from agriculture

to manufacturing and not towards services.

42This number is computed as before, by multiplying one standard deviation in ∆Asoyj by the estimated coeffi cient
on ∆Asoyj in our specification with municipality controls when the outcome is agricultural labor productivity (column
2 of Table 9): 0.851× 0.131 = 0.111
43This number is computed multiplying the predicted increase in agricultural labor productivity for one standard

deviation in ∆Asoyj by the elasticity of manufacturing employment share to agricultural labor productivity: 0.111×
0.161 = −0.0179.
44The services sector includes: construction, commerce, lodging and restaurants, transport, finance, housing ser-

vices, domestic workers and other personal services. Other sectors include: public administration, education, health,
international organizations, extraction and public utilities.
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In the theory section we identified two effects of labor-saving technical change in agriculture:

the supply effect and the demand effect. The supply effect is generated by the reduction in the

marginal product of labor in the agricultural sector, which reduces agricultural employment. The

demand effect is generated by the higher income resulting from agricultural productivity growth

which leads to increased demand for services. As a result, the net effect of agricultural technical

change on industrialization depends on the relative strength of the supply and demand effects.

In addition, the demand effect is driven by the increase land rents, thus its strength depends on

the extent to which land-owners consume services in the region where their land is located. This

suggests that the absence of an effect of technical change on employment in the service sector might

be related to the fact that in some areas of Brazil land owners do not reside locally or consume

services produced in large cities.

In sum, our empirical analysis implies that in regions more affected by agricultural technical

change labor reallocated from agriculture to manufacturing and not towards services. Our inter-

pretation of these findings is that the differences-in-differences empirical strategy is well suited to

identify the supply effect to the extent that labor markets are local. However, our model suggests

that it might not be suitable to identify the demand effect if land owners do not consume local

services. Thus, a further investigation of the effect of agricultural technical change on non-traded

sectors is left for future work.

5.3 Variable Factor Endowments

The model presented in Section 3 describes a small open economy where goods can be freely traded

but factor endowments are fixed. Our empirical strategy thus relies on the assumption that each

unit of observation behaves as a small open economy: goods can be traded across municipalities

but labor markets are local and there is a fixed supply of land. However, the period under study is

characterized by significant internal migration flows: 16 percent of the population aged between 16

and 55 years old had moved to their 2010 municipality of residence during the previous 10 years. In

addition, Brazil has vast areas of underutilized land, which were in part converted to agricultural

activities during the period under study. Between 1996 and 2006 the land used for cultivation or

cattle ranching increased by 7 percent to 154 million hectares in the regions of the North, North-

East and Center-West. Thus, in this section, we investigate the role of migration and the expansion

in the agricultural frontier.
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5.3.1 Labor

We first investigate the impact of agricultural technical change on migration flows. The model

predicts that municipalities more affected by labor saving technical change (GE soy) experience

a larger contraction in labor demand in the agricultural sector. Because labor is assumed to

be immobile across municipalities, all the adjustment to technological change occurs through a

reallocation of labor towards the manufacturing sector. However, if workers could reallocate to other

municipalities, some of this adjustment would occur through out-migration. To test this prediction,

we construct net migration rates for every municipality between 2000 and 2010 using data from

the population census.45 Next, we estimate the baseline specification described by equation (12)

using the net migration rate in each municipality as dependent variable. Estimation results are

presented in the first column of Table 12. The estimated coeffi cient on the change in soy potential

yields is negative and significant, indicating that municipalities with larger increases in potential

soy yields experienced a net outflow of migrants between 2000 and 2010. These estimates can be

used to assess the relative importance of the two adjustment mechanisms mentioned above: labor

reallocation towards other sectors and out-migration. For this purpose, we can first compute the

elasticity of migration flows to changes in agricultural labor productivity due to GE soy adoption:

a 1 percent increase in agricultural labor productivity corresponds to a 0.097 percentage points

decrease in the migration rate.46 This amounts to roughly a third (0.37) of the reduction in the

employment share of the agricultural sector.47 Finally, let us note that the estimated coeffi cient on

the change in maize potential yields is positive and significant, indicating that municipalities with

higher increase in potential maize yield experienced a net inflow of migrants in the same period, as

expected.

The findings discussed above suggest that the presence of migration flows across municipalities

dampen the effects of technical change on sectoral employment shares, as part of the adjustment

occurs through migration flows. In particular, in our model, we can think of out-migration in-

duced by labor-saving technical change as a reduction in the labor endowment, which would result

45Net migration rates are defined as the number of (net) migrants in a municipality divided by its population. A
detailed explanation of how net migration rates are constructed is contained in the Appendix.
46We compute this elasticity as in section 5.2.2: we divide the estimated coeffi cient on ∆Asoyj when the outcome is

the migration rate by the estimated coeffi cient on ∆Asoyj when the outcome is agricultural labor productivity. When
we estimate the specification including controls for municipality characteristics, this ratio is equal to: −0.013/0.131 =
−0.097.
47To compare the migration rate estimates with the reduction in the employment share of agriculture we need to

take into account that the migration rate is computed relative to the overall population aged between 16 and 55 in
2000, while employment shares are computed relative to workers only. Thus, we multiply the elasticity of migration
rate to changes in agricultural labor productivity for the overall population aged between 16 and 55 in 2000 (-0.097)
by the share of active population in the age group 16-55 in 2000 (0.71) and the employment rate for that same age
group (0.85). This adjusted elasticity is equal to -0.059. Then, we divide this number by the estimated elasticity of
agricultural employment share to changes in agricultural labor productivity (-0.158) obtaining a ratio of 0.37.
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in a reduction in the manufacturing employment share. This is because equilibrium agricultural

employment is unaffected by a change in the labor endowment (see equation 4). In turn, the equi-

librium level of employment in manufacturing is determined by the labor market clearing condition,

Lm = L − L∗a. Thus, the manufacturing employment share must fall when the labor endowment

falls. As a result, the presence of migration dampens the positive effects of soy technical change on

the manufacturing employment share. A similar argument implies that the in-migration induced

by land augmenting technical change in maize would increase the manufacturing employment share

and dampen the effects of maize technical change.

5.3.2 Land

In this section we study the role of the expansion in the agricultural frontier. During this period

the frontier expanded not only over the Amazon rainforest but also in the Cerrado. This is a

tropical savanna eco-region in central Brazil where soils used to be too acidic and nutrient poor.

Starting from the 1980s these soils were treated by the Brazilian Agricultural Research Corporation,

EMBRAPA, which enabled agricultural activities to expand over these areas. The incorporation

if forest or fallow land into agricultural activities can potentially affect our estimates of the effects

of technical change. In the model, an expansion in the land endowment would have the same

effects as land augmenting technical change. Thus, differential increases in the land endowment

across regions could account for our finding that areas more affected by technical change in maize

experienced an increase in the agricultural employment share or attenuate our findings for the

effects of soy technical change.

To assess the extent to which our estimates are affected by expansions in the agricultural frontier

we test the predictions of the model in a subsample of municipalities where the land endowment did

not increase. In particular, we define frontier municipalities as those which experienced an increase

in land use for agricultural activities between 1996 and 2006 and split the sample of municipalities

in two groups: frontier and non-frontier (see map in Figure A6 in the Appendix). Next, we estimate

our baseline specification described by equation (12) separately for each subsample. Our estimates

of the effect of soy technical change on the agricultural and manufacturing employment shares in

the subsample of non-frontier (frontier) municipalities are only slightly larger (smaller) in absolute

value than estimates using the full sample, as shown in Columns 4 to 7 of Table 12. This finding

suggests that the expansion of the agricultural frontier does not significantly mitigate our baseline

estimates. In the case of maize, estimates of the effect of technical change on the agricultural and

manufacturing employment shares in the subsample of non-frontier municipalities are slightly larger

in absolute value than estimates using the full sample. In contrast, estimates are smaller and not
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statistically significant in the frontier. These findings suggest that introducing a second harvesting

season for maize only had significant effects on labor demand in non-frontier municipalities.

Finally, we study whether migration patters differ in frontier and non-frontier municipalities.

Columns 2 and 3 of Table 12 show that the effect of soy technical change on migration is similar for

both samples. In contrast, the positive effect of maize technical change on migration is concentrated

in non-frontier municipalities.

6 Robustness Checks

6.1 Additional Controls

A potential concern regarding our estimates is that municipalities that benefit the most from

technical change in soy also have higher overall agricultural productivity. Thus, our estimates could

be capturing differential structural transformation trends across municipalities that differ in their

initial level of agricultural development. To address this concern, we report estimates of equation

(12) including controls for three different measures of agricultural development: productivity, wages

and employment share.

Coeffi cient estimates are reported in Tables A1 and A2 of the Appendix. The estimated effects

of soy technical change on agricultural and manufacturing outcomes are robust to the inclusion of

these controls. First, note that the sign of estimated coeffi cients remains the same and estimates

remain significant at 1 percent. In terms of their absolute value, estimated coeffi cients are stable

for the expansion of soy area, output per worker, labor intensity and manufacturing wages. In turn,

estimates for the agricultural and manufacturing employment shares decrease 25 and 40 percent,

respectively, when we include the control for agricultural labor productivity. The reason why

estimates are affected by the inclusion of this control is that, to some extent, places with higher

initial soy yields benefited more from the new technology. As a result, the control for lagged overall

agricultural productivity captures part of the variation we are interested in. Thus, we interpret

our estimates of the effects of soy technical change conditional on the initial level of agricultural

productivity as indicative that at least 60 percent of our estimated effects of technical change on

sectoral employment shares are not driven by differential structural transformation trends across

municipalities that differ in the initial level of agricultural productivity.48

48Note that all coeffi cient estimates are stable when we only include the control for the lagged agricultural em-
ployment share, except for the estimated effect of technical change on employment shares themselves which tend to
fall. Still, the estimated effect of technical change on the manufacturing employment share only falls from 0.021 to
0.014 and remains statistically significant at 1 percent. These results imply that our estimated coeffi cients are not
capturing delayed responses to the trade liberalization that occurred at the beginning of the previous decade in areas
with different initial agricultural specialization, studied by Dix-Carneiro and Kovak (2014).
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We obtain similar findings in the case of maize. Estimated coeffi cients are robust to including

these additional controls. Estimates of the effect of maize technical change on agricultural labor

intensity and manufacturing wages are stable and significant at 1 percent. In the case of the

agricultural and manufacturing employment shares, estimates fall by 25 and 40 percent, respectively,

when we control for lagged labor productivity in agriculture.

6.2 Pre-Existing Trends

In this section we show that our results are robust to controlling for pre-existing trends. This

exercise addresses the following concern: if municipalities that are better suited for adopting GE soy

were already experiencing faster structural transformation before the legalization of this technology

in Brazil, our exogenous measure of technical change would capture a long term trend instead of

the effect of GE soy adoption.

In order to test for the existence of pre-existing trends, we use data from the Population Censuses

of 1980, 1991, 2000 and 2010. We thus estimate a model similar to the one presented in our baseline

equation 12, but with an additional time period, as follows.

∆yjt = αt + β1∆A
soy
j + β2∆A

soy
j ×Aftert + γ1∆A

maize
j +

γ2∆A
maize
j ×Aftert + θXjt−1 + ∆εjt (13)

where the outcome of interest, ∆yjt is the decadal change in outcome variables between the start

of a period (year t− 1) and the end (year t). Each period spans a decade: 1991 to 2000 and 2000

to 2010. αt are time dummies for each decade and Aftert is a dummy equal to 1 if t = 2010. Thus,

β1 captures the effect of soy technical change that is common in the period before (1991-2000) and

after (2000-2010) the adoption of GE soy seeds. In contrast, β2 captures the differential effect of

soy technical change after the introduction of GE soy seeds. Similarly, the coeffi cient γ2 captures

the differential effect of maize technical change in the period 2000-2010. Finally, Xjt−1 are a set of

ten-year-lagged municipality characteristics including the share of rural population, average income

per capita, population density and literacy rate.49

Results for manufacturing employment are reported in column 1 of Table A3 of the Appendix.

Our estimate of β1, which captures the effect of soy technical change that is common in the period

before (1991-2000) and after (2000-2010) the adoption of GE soy seeds, is extremely small and not

49The municipality characteristics correspond to the year 1991 when the outcome variables are observed in changes
between 2000 and 2010, and to year 1980 when the outcome variables are observed in changes between 1991 and
2000.
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statistically different from zero. This finding indicates that there are no pre-trends in manufac-

turing employment. In addition, our estimate of β2, which estimates the differential effect of soy

technical change on manufacturing employment after the introduction of GE soy seeds, is positive

and precisely estimated. Similarly, in the case of maize, we do not find pre-existing trends in man-

ufacturing employment. Note that we perform this test for the level of manufacturing employment

but not for the manufacturing and agricultural employment shares. This is because there were

important changes in the definition of employment after the 1991 Census, thus employment shares

can not be measured in a consistent way across the 1991 and 2000 Censuses.50

Column 2 of Table A3 shows the results of estimating equation (13) when the outcome variable

is the average wage in manufacturing. In this case, ∆Asoy had an opposite effect on manufacturing

wages between 1991 and 2000 with respect to the 2000-2010 period. Therefore, the existence of

these pre-existing trends in manufacturing wages attenuates our baseline estimated effects of soy

and maize technical change on wages in the period 2000-2010, presented in Table 10.

Finally, we check for pre-existing trends in migration. A potential concern is that areas that

are better suited for adopting GE soy experienced a pattern of migration prior to the legalization

of GE soy that affected farmers’incentive to adopt this new technology. For example, if these areas

experienced large out-migration in the decade before GE soy was legalized, farmers would have

had a higher incentive to adopt a labor-saving technology to cope with labor scarcity. Column 3 of

Table A3 shows the results of estimating equation (13) when the outcome variable is net migration

rate. The coeffi cient on ∆Asoy shows that there are no differential pre-existing trends in migration

for areas that have a higher increase in potential soy yields. Similarly, in the case of maize, we do

not find pre-existing trends in migration.51

These tests validate our interpretation that our estimates of the effects of agricultural technical

change on structural transformation are due to the introduction of new agricultural technologies
50Between the 1991 and 2000 Censuses the Brazilian Statistical Institute (IBGE) changed its definition of employ-

ment in two important ways. First, it started to count zero-income workers as employed. In order to homogenize the
Brazilian Census with international practices, the IBGE started to consider employed anyone who helped another
household member with no formal compensation, as well as agricultural workers that produced only for their own
consumption (IBGE, 2003; p. 218). Zero-income workers are more common in agriculture than in other sectors, and
in 1991 were only partially included in the labor force. In the 1991 Census 15% of agricultural workers reported
zero income, against 34% in 2000 and 35% in 2010. Second, the IBGE changed the reference period for considering
a person employed: while in 1991 such period included the last 12 months, in 2000 it only included the reference
week of the Census. This new rule implied that workers performing temporary and seasonal activities that were not
employed during the reference week were counted in the 1991 census but not the in the 2000 census. This second
change is likely to be especially problematic for the agricultural sector, considering that the reference week in the
2000 Census was in the middle of the Brazilian winter. This is why, to test for pre-existing trends, we focus on the
absolute number of workers employed in manufacturing as an outcome (instead of its share in total employment).
This measure is less likely to be affected by the changes introduced between the two censuses because: there are
very few zero-income workers in manufacturing (0.5%, 1.9% and 1% of manufacturing workers declare zero income
in 1991, 2000 and 2010, respectively); and manufacturing is less seasonal than other activities.
51These results suggest that the migration flows generated by the expansion of the Brazilian road network in the

years 1960-2000 that are studied by Morten and Oliveira (2014) are unlikely to be confounding our results.

33



rather than to pre-existing trends in areas that were more affected by these new technologies.

6.3 Larger Unit of Observation: Micro-Regions

In the empirical analysis performed so far we assumed that municipalities are a good approximation

of the relevant labor market faced by Brazilian agricultural workers. A potential issue is that

local labor market boundaries do not overlap with a municipality’s administrative boundaries.

In particular, some municipalities might be too small to properly capture labor flows between

urban and rural areas, provided that manufacturing activities mostly take place in the former, and

agricultural activities in the latter. In order to take into account this concern we aggregate our data

at a larger unit of observation: micro-regions. These regions are groups of territorially contiguous

municipalities created, for statistical purposes, by the Brazilian Statistical Institute (IBGE). Table

13 reports the results of estimating equation (12) using micro-regions as a unit of observation. The

outcome variables are the same as in Table 10: change in manufacturing employment share, change

in manufacturing employment (in logs) and change in average manufacturing wage (in logs). The

estimates are consistent and similar in magnitude to those reported in Table 10, both for soy and

maize.

6.4 Input-Output Linkages

Our theoretical model predicts that agricultural technical change can have an effect on manufac-

turing employment through labor market forces. In the case of soy, for example, the adoption

of new agricultural technologies releases agricultural workers that find employment in the manu-

facturing sector. In this section we investigate to which extent our findings reflect the strength of

another channel through which agricultural technical change can affect manufacturing employment:

input-output linkages. Soy and maize farming require inputs produced by other sectors, including

manufacturing. Therefore, for example, an expansion of the area farmed with soy in a given mu-

nicipality might drive an increase in manufacturing employment in industries that produce inputs

used in soy production, such as chemicals or fertilizers. To the extent that manufacturing firms

producing chemicals and fertilizers used in agriculture face high transport costs, there might be an

incentive for them to locate in the same municipality in which agricultural production takes place.

Therefore, the effect of agricultural technical change on manufacturing that we show in Table 10

could be explained by an increase in the agricultural demand for manufacturing inputs. A similar

argument applies for manufacturing industries that use soy and maize as intermediate inputs, such

as the food processing industry. In order to assess the contribution of these direct linkages on our
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estimates, we construct a measure of manufacturing employment that excludes the sectors directly

linked to soy and maize production through input-output chains.

In order to identify input-output linkages in the data, we proceed as follows. We use the

Brazilian input-output matrix (IBGE, 2008) to identify manufacturing sectors that are providing

inputs, or receiving outputs, from the soy and maize sectors. On the input side, soy and maize are

used as intermediate goods in only one manufacturing sector: the food and beverage sector, which in

2005 purchased around half of the total Brazilian production of both crops. On the output side the

matrix is less detailed, thus we use information on goods purchased by agricultural and breeding

farms in general. Half of the inputs purchased by these farms are supplied by manufacturing

sectors and four commodities account for 84% of the total value of inputs purchased: inorganic

chemicals, fertilizers, diesel oil and maize oil. These commodities are produced by the chemical

industry, the oil refining industry and the food and beverage industry. We use this information to

construct measures of employment and wages in manufacturing that exclude those industries that

are providing inputs, or receiving outputs, from the soy and maize sectors.

Table 14 reports estimates of our baseline specification described by equation (12) using as

outcome variables measures of manufacturing employment and wages that exclude workers em-

ployed in sectors directly linked to soy and maize. Estimates of the effect of soy technical change

on the manufacturing employment share and level are positive, precisely estimated and 38 to 10

percent smaller than our baseline estimates displayed in Table 10.52 In turn, the effect of technical

change in soy on manufacturing wages decreases substantially, and is not precisely estimated. In the

case of maize, estimated coeffi cients are essentially unaffected by excluding workers in downstream

and upstream manufacturing sectors when the outcomes are manufacturing employment share and

level. As in the case of soy, the effect on manufacturing wages decreases in size and is not precisely

estimated. Taken together, the results presented in this section imply that at least 62 percent of

our estimated effect of agricultural technical change on the manufacturing employment share is not

driven by the processing of soy and maize in downstream industries nor larger agricultural sector

demand for manufacturing inputs. A more detailed analysis is needed to separate the role of labor

market and input-output forces in the remaining 38 percent of the total estimated effect, which is

an interesting avenue for further work.

52 In our specification with all initial municipality controls, the point estimate on ∆Asoy when the outcome is
manufacturing employment share goes from 0.021 to 0.013. We can reject the null hypothesis that these two coeffi cients
are equal. When the outcome is manufacturing employment instead, the point estimate on ∆Asoy goes from 0.186
to 0.167. In this case, the two coeffi cients are not statistically different.
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6.5 Commodity Prices

In this section we show that our results are robust to controlling for international commodity prices.

To the extent that variation in international prices of soy and maize affect agricultural outcomes

in all Brazilian municipalities proportionally, their effects are captured by the time fixed effects

in equation (9). However, price changes might have heterogeneous effects across municipalities

with different suitability to the cultivation of soy and maize. For example, an increase in the

international price of soy could induce farmers to expand the area devoted to soy relatively more

in municipalities that are initially more suitable for its cultivation.

Figures A7 and A8 display the evolution of international prices of soy and maize, expressed in

2000 US$. These Figures show how the international prices of both commodities have been in an

upward trend starting from year 2007. This pattern most likely does not affect our estimates when

we use data for the last two Agricultural Censuses: 1996 and 2006. In particular, note that the

international price for both soy and maize was lower in 2006 than in 1996. However, when we use

data from the last two Population Censuses, which took place in 2000 and 2010, the end of period

year is characterized by high international soy and maize prices with respect to the initial year.

To address this concern, we assess the robustness of our findings for the manufacturing sector to

controlling for changes in commodity prices.

The data from the Population Censuses does not allow us to control for yearly variation in soy

and maize prices. We therefore rely on an alternative source of data for manufacturing outcomes:

the Annual Manufacturing Survey (PIA). The Annual Manufacturing Survey is carried out yearly,

allowing us to both exclude years of high international commodity prices and fully control for price

variation. It covers the universe of manufacturing firms with at least 30 employees in Brazil, and

it is therefore representative at municipality level for this class of firms. We focus on two variables

from this survey: manufacturing employment and average wages.53

We estimate an equation of the following form:

yjt = αj + αt + βAsoyjt + γAmaizejt +
∑
z

γzP
z
t A

z
j0 + δRuralj1991 × t+ θXjt1991 × t+ εjt (14)

where yjt is total employment or average wage in a given municipality; A
soy
jt is equal to the potential

soy yield under low inputs for all years before 2003 and to the potential soy yield under high inputs

starting from 2003 (same criteria is used to define Amaizejt ). We control for the prices of soy and maize

53The average wage is defined as the aggregate wage bill (in real terms) divided by the total number of workers
employed in a municipality.
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by multiplying the potential yield under low inputs of each crop by the time varying international

price of each crop. Finally, we add as controls the share of rural population and the same set of

initial municipality characteristics used in our main specification, all interacted with a time trend.

In all specifications we control for both municipality and year fixed effects (αj and αt) and cluster

standard errors at the municipality level to address potential serial correlation in the error term.

The results obtained using data from the Annual Manufacturing Survey are consistent with

those obtained using the Population Census (see Table A4 in the Appendix): areas with higher

increase in potential soy yield experienced a larger increase in manufacturing employment and a

larger decrease in average manufacturing wages. The effect on wages is less precisely estimated

than in Table 10, and it loses statistical significance when we add all controls. Importantly, when

we control for differential effects of international prices in columns 2 and 5, our point estimates

do not change. In terms of magnitude, the point estimates we obtain with this specification for

the coeffi cients on both ∆Asoy and ∆Amaize are similar to those obtained with the same outcomes

using the Population Census data.

6.6 Spatial Correlation

The maps we present in Figures A2 through A5 suggest that the potential yield of both soy and

maize are correlated across space. Therefore, in this section we show that our estimates remain

significant when we allow the residuals to be correlated within geographical areas larger than a

single municipality.

For the coeffcient estimates of the effect of agricultural technical change reported in Tables 8, 9

and 10, we compute standard errors clustered at two additional levels of aggregation: micro-regions

and meso-regions.54 Tables A5, A6 and A7 report our results. The first row below the coeffi cients

reports baseline robust standard errors for comparison. The following two rows report standard

errors clustered at micro and meso-region level, along with their significance levels. In the case

of soy technical change, the tables show that although standard errors tend to increase slightly

after clustering at micro and meso-region level, most coeffi cient estimates remain significant at

1%. In the case of maize, all estimates remain statistically significant except for manufacturing

employment when clustering at the meso-region level.

54Both micro-regions and meso-regions are statistical divisions of Brazil proposed by the IBGE to facilitate the
collection of data. There are 558 micro-regions and 137 meso-regions.
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6.7 Alternative Definition of Technical Change

The measure of technical change proposed in section 5.2 is the difference in potential yields between

the high and low agricultural technology in the FAO-GAEZ dataset. In this section, we test the

robustness of our results to an alternative definition of technical change that uses potential yields

under an intermediate technology to capture the level of agricultural technology before the intro-

duction of GE seeds. The FAO-GAEZ dataset characterizes this intermediate technology as using

improved varieties of seeds, partial mechanization and some use of chemicals. This technological

level lies somewhere in between traditional and technologically advanced farming.

We estimate equation (12) for the set of agricultural and manufacturing outcomes of interest,

using the differences in potential yields in soy and maize between the high and the intermediate level

of technological inputs to measure ∆Asoyj and ∆Amaizej . Table A8 presents the resulting coeffi cient

estimates. A comparison with Tables 8, 9 and 10 shows that our main results are robust to

this alternative definition of technical change in agriculture in the sense that point estimates and

standard errors have a similar size. We can use the estimated coeffi cients under this alternative

specification to compute the elasticity of agricultural and manufacturing employment shares to

changes in agricultural labor productivity due to GE soy adoption in the same way as we do

in sections 5.2.2 and 5.2.3. The elasticities obtained are 27 percent smaller in the case of the

agricultural employment share and 46 percent smaller in the case of the manufacturing employment

share.55

We prefer to use the difference between high and low level of inputs in our baseline specification

as it is a more precise measure of technical change in agriculture. This is because the high and low

level of technical inputs are clearly defined, while intermediate inputs has a loose definition that

could span different levels of agricultural technology. As a result, using this definition might miss

part of the variation that we are trying to capture. For example, improved seed varieties which are

described as part of the bundle of intermediate inputs can capture part of the effect of adopting

GE seeds.

7 Final Remarks

This paper provides direct empirical evidence on the effects of agricultural productivity on structural

transformation. We isolate these effects by studying the introduction of genetically engineered soy

in Brazil. This technology allows farmers to employ fewer workers per unit of land to yield the

55The elasticity of the agricultural employment share to agricultural labor productivity is -0.115. As for manufac-
turing, we obtain an elasticity of employment share to agricultural labor productivity of 0.087.

38



same output, increasing labor productivity in agriculture. After its legalization in 2003, genetically

engineered soy experienced a rapid and widespread adoption in Brazil. We exploit the differential

impact of this new technology on potential yields across geographical areas to estimate the causal

effect of agricultural technical change on sectoral employment shares.

Our findings contribute to the debate on the effects of agricultural productivity on industrializa-

tion in open economies. We argue that these effects depend crucially on the factor-bias of technical

change. We provide evidence that when technical change in agriculture is strongly labor-saving, as

in the case of genetically engineered soy, it can foster industrialization. When, instead, technical

change is labor-biased, as in the case of the introduction of a second harvesting season in maize,

agricultural productivity can retard industrialization.

39



References

Acemoglu, D. (2010). “When Does Labor Scarcity Encourage Innovation?”. Journal of Political
Economy 118, 1037–1078.

Acemoglu, D. and V. Guerrieri (2008). “Capital Deepening and Non-Balanced Economic Growth”.
Journal of Political Economy 116, 467–498.

Baumol, W. J. (1967). “Macroeconomics of Unbalanced Growth: the Anatomy of Urban Crisis”.
American Economic Review 57 (3), 415–426.

Caselli, F. and W. J. Coleman II (2001). “The US Structural Transformation and Regional Con-
vergence: A Reinterpretation”. Journal of Political Economy 109 (3), 584–616.

Clark, C. (1940). “The Conditions of Economic Progress”. London: MacMillan & Co.

CONAB (2003-2012). “Levantamento De Avaliação Da Safra”.

Corden, W. M. and J. P. Neary (1982). Booming sector and de-industrialisation in a small open
economy. The Economic Journal , 825–848.

Dix-Carneiro, R. and B. Kovak (2014). “Trade Reform and Regional Dynamics: Evidence from 25
Years of Brazilian Matched Employer-Employee Data”. Unpublished manuscript .

Duffy, M. and D. Smith (2001). “Estimated Costs of Crop Production in Iowa”. Iowa State
University Extension Service FM1712.

EMBRAPA (2006). “Cultivo do Milho”. Embrapa, Sistemas de Produção.

Fernandez-Cornejo, J. and M. Caswell (2006). “The First Decade of Genetically Engineered Crops in
the United States”. United States Department of Agriculture, Economic Information Bulletin 11.

Fernandez-Cornejo, J., C. Klotz-Ingram, and S. Jans (2002). “Estimating Farm-Level Effects of
Adopting Herbicide-Tolerant Soybeans in the USA”. Journal of Agricultural and Applied Eco-
nomics 34, 149–163.

Field (1978). “Sectoral Shifts in Antebellum Massachusetts: A Reconsideration”. Exploration in
Economic History 15, 146–171.

Findlay, R. and H. Grubert (1959). “Factor Intensities, Technological Progress, and the Terms of
Trade”. Oxford Economic Papers, 111–121.

Foster, A. D. and M. R. Rosenzweig (2004). “Agricultural Productivity Growth, Rural Economic
Diversity, and Economic Reforms: India, 1970–2000”. Economic Development and Cultural
Change 52 (3), 509–542.

Foster, A. D. and M. R. Rosenzweig (2008). “Economic Development and the Decline of Agricultural
Employment”. Handbook of Development Economics 4, 3051–3083.

Gollin, D., D. Lagakos, and M. E. Waugh (2014). The agricultural productivity gap. Quarterly
Journal of Economics 129 (2), 939–993.

Gollin, D., S. Parente, and R. Rogerson (2002). “The Role of Agriculture in Development”. Amer-
ican Economic Review 92 (2), 160–164.

Herrendorf, B., R. Rogerson, and A. Valentinyi (2013a). “Growth and Structural Transformation”.
NBER Working Paper .

Herrendorf, B., R. Rogerson, and A. Valentinyi (2013b). “Two Perspectives on Preferences and
Structural Transformation”. American Economic Review 103 (7), 2752–2789.

Hornbeck, R. and P. Keskin (2015). “Does Agriculture Generate Local Economic Spillovers? Short-
run and Long-run Evidence from the Ogallala Aquifer”. American Economic Journal: Economic
Policy 7 (2), 192–213.

Hornbeck, R. and S. Naidu (2014). “When the Levee Breaks: Black Migration and Economic
Development in the American South”. American Economic Review 104 (3), 963–990.

Huggins, D. R. and J. P. Reganold (2008). “No-Till: the Quiet Revolution”. Scientific Ameri-
can 299, 70–77.

IBGE (1996). “Censo Agropecuário 1995-1996”. Rio de Janeiro, Brazil: Instituto Brasileiro de
Geografia e Estat́ıstica (IBGE).

40
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Figures and Tables

Figure 1
Soy and Maize in Brazil (1980-2011)
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Notes: Data sources are: CONAB and PNAD. We exclude the states of: Rondonia, Acre, Amazonas, Roraima, Pará and Amapá

(rural areas not covered by PNAD until 2004) and Tocantins, Mato Grosso do Sul, Goias, Distrito Federal (incomplete sample of

households covered by PNAD for years 1992 to 1997). See Section A2 of the Appendix for details.
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Figure 2
Technological change in soy

Municipalities

Notes: Authors’ calculations from FAO-GAEZ data.

Figure 3
Technological change in soy

Micro-regions

Notes: Authors’ calculations from FAO-GAEZ data.
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Table 1
Land use
Million hectares

Principal Activity: 1996 2006
Permanent crops 7.5 11.7
Seasonal crops 34.3 44.6

Soy 9.2 15.6
Cattle ranching 177.7 168.3
Forest 110.7 91.4
Not usable 15.2 8.2
Other 8.3 9.0
Total 353.6 333.2

Table 2
Labor intensity
Workers per 1000 he

Principal activity: 1996 2006
Seasonal crops 107.6 83.7

Soy 28.6 17.9
All cereals 92.4 76.8
Other 159.2 145.4

Permanent crops 126.8 127.4
Cattle ranching 22.6 30.6
Forest 33.9 46.1

Notes: Seasonal crops include cereals (rice, wheat, maize and other cereals), soybean, cotton, sugar cane and tobacco. Permanent

crops include (among others) coffee and cocoa. Not usable land includes lakes and areas that are not suitable for neither crop

cultivation nor cattle ranching. The definition of ”other uses” is not precisely comparable across years: in 1996 it includes resting

area for seasonal crops; in 2006 it includes area devoted to pasture, flowers and buildings.See Section A2 of the Appendix for details

Table 3
Summary statistics of main variables at municipality level

Variable Name 1996 1996-2006
PANEL A: Agricultural Census mean st.dev. mean st.dev. obs.
Log labor productivity in agriculture 7.690 1.192 0.561 0.762 4,149
Log labor intensity in agriculture -2.585 1.048 -0.027 0.551 4,149
Soy area share 0.027 0.097 0.013 0.062 3,652
Maize area share 0.049 0.068 0.010 0.093 3,652
GE soy area share 0.000 0.000 0.015 0.075 3,652

2000 2000-2010
PANEL B: Population Census mean st.dev. mean st.dev. obs.
Employment shares:

Agriculture 0.383 0.189 -0.064 0.074 4,149
Manufacturing 0.104 0.090 0.014 0.057 4,149
Services 0.362 0.136 0.032 0.057 4,149
Other sectors 0.151 0.054 0.018 0.038 4,149

Log employment in manufacturing 5.885 1.580 0.221 0.608 4,149
Log wage in manufacturing 5.541 0.500 0.287 0.365 4,149

1991-2000 2000-2010
PANEL C: Migration mean st.dev. obs mean st.dev. obs.

Net migration -0.036 0.181 3992 -0.024 0.124 4149

Low inputs High inputs Difference
PANEL D: FAO GAEZ mean st.dev. mean st.dev. mean st.dev. obs.

Potential yield in soy 0.302 0.154 2.113 0.938 1.811 0.851 4,149
Potential yield in maize 0.992 0.494 4.066 2.197 3.073 1.811 4,149

Notes: See Section A4 of the Appendix for a detailed description of each variable.
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Table 4
Basic correlations in the data: agriculture
Productivity, labor intensity and employment share

(1) (2) (3)
∆ Log output per ∆ Log labor ∆ Employment

VARIABLES worker 2006−1996 intensity 2006−1996 share 2010−2000

∆ Soy area share 2006−1996 0.583** -0.479*** -0.090***
(0.232) (0.154) (0.027)

∆ Maize area share 2006−1996 1.597*** 0.737*** -0.014
(0.184) (0.119) (0.019)

Observations 3,765 3,765 3,765
R-squared 0.023 0.008 0.003

Notes: Changes calculated over the years 1996 and 2006 when the data sources are the Agricultural Censuses of 1996 and 2006,

and over the years 2000 and 2010 when the data sources are the Population Censuses of 2000 and 2010. The unit of observation is

the AMC. Robust standard errors reported in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.

Table 5
Basic correlations in the data: manufacturing
Employment share, employment and wages

(1) (2) (3)
∆ Employment ∆ Log ∆ Log

VARIABLES share 2010−2000 employment 2010−2000 wage 2010−2000

∆ Soy area share 2006−1996 0.106*** 1.053*** 0.150
(0.022) (0.226) (0.113)

∆ Maize area share 2006−1996 0.001 0.018 -0.039
(0.013) (0.147) (0.080)

Observations 3,765 3,765 3,765
R-squared 0.007 0.006 0.000

Notes: Changes calculated over the years 1996 and 2006 when the data sources are the Agricultural Censuses of 1996 and 2006,

and over the years 2000 and 2010 when the data sources are the Population Censuses of 2000 and 2010. The unit of observation is

the AMC. Robust standard errors reported in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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Table 6
Comparing Municipalities below/above median increase in potential
soy yield

(1) (2) (3)
Below Above Difference

∆Asoy median ∆Asoy median

Agricultural Employment Share 1991 0.500 0.443 -0.057***
[0.007]

Manufacturing Employment Share 1991 0.080 0.097 0.017***
[0.003]

Share Rural Pop 1991 0.516 0.404 -0.112***
[0.007]

Log Income per Capita 1991 4.389 4.656 0.267***
[0.018]

Log Pop Density 1991 3.155 3.219 0.064
[0.041]

Literacy rate 1991 0.688 0.745 0.057***
[0.005]

Observations 2075 2074

Note: Average values of observable characteristics of municipalities that rank below and above the median of ∆Asoy . All

observable characteristics are from the Population Census 1991. Column (3) reports the difference between columns (2) and (1),

along with the standard error and significance level of the difference. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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Table 7
The effect of technological change on agriculture
GE soy adoption

(1) (2) (3) (4)
VARIABLES ∆ GE Soy area share 2006−1996 ∆ Non-GE Soy area share 2006−1996

∆Asoy 0.021*** 0.019*** -0.009*** -0.009***
(0.002) (0.002) (0.002) (0.002)

Share Rural Pop 1991 0.039*** 0.085*** -0.017*** -0.044***
(0.005) (0.008) (0.004) (0.007)

Log Income per Capita 1991 -0.000 0.001
(0.003) (0.003)

Log Pop Density 1991 0.003*** -0.005***
(0.001) (0.001)

Literacy Rate 1991 0.114*** -0.048***
(0.011) (0.010)

Observations 3,652 3,652 3,652 3,652
R-squared 0.083 0.162 0.019 0.044

Notes: The unit of observation is the AMC. Robust standard errors reported in parentheses. Significance levels: *** p<0.01, **

p<0.05, * p<0.1.

Table 8
The effect of technological change on agriculture
Soy and maize expansion

(1) (2) (3) (4)
VARIABLES ∆ Soy area share 2006−1996 ∆ Maize area share 2006−1996

∆Asoy 0.013*** 0.013*** 0.001
(0.001) (0.002) (0.003)

∆Amaize -0.001 0.003*** 0.003***
(0.001) (0.001) (0.001)

Share Rural Pop 1991 0.020*** 0.039*** 0.011** 0.010
(0.003) (0.005) (0.004) (0.007)

Log Income per Capita 1991 0.001 -0.005
(0.002) (0.004)

Log Pop Density 1991 -0.002*** 0.004***
(0.000) (0.001)

Literacy Rate 1991 0.064*** -0.006
(0.007) (0.012)

Observations 3,652 3,652 3,652 3,652
R-squared 0.067 0.124 0.009 0.015

Notes: The unit of observation is the AMC. Robust standard errors reported in parentheses. Significance levels: *** p<0.01, **

p<0.05, * p<0.1.
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Table 9
The effect of technological change on agriculture
Productivity, labor intensity and employment share

(1) (2) (3) (4) (5) (6)
∆ Log output per ∆ Log labor ∆ Employment

VARIABLES per worker 2006−1996 intensity 2006−1996 share 2010−2000

∆Asoy 0.115*** 0.131*** -0.057*** -0.064*** -0.018*** -0.021***
(0.024) (0.026) (0.018) (0.021) (0.002) (0.002)

∆Amaize -0.025** -0.033*** 0.031*** 0.033*** 0.005*** 0.006***
(0.011) (0.011) (0.008) (0.009) (0.001) (0.001)

Share Rural Pop 1991 0.258*** 0.125* -0.136*** -0.177*** -0.091*** -0.076***
(0.057) (0.070) (0.048) (0.051) (0.005) (0.007)

Log Income per Capita 1991 -0.010 0.029 0.014***
(0.045) (0.039) (0.004)

Log Pop Density 1991 -0.016 -0.017 -0.000
(0.011) (0.011) (0.001)

Literacy Rate 1991 -0.270* -0.124 -0.012
(0.139) (0.116) (0.014)

Observations 4,149 4,149 4,149 4,149 4,149 4,149
R-squared 0.009 0.012 0.005 0.007 0.068 0.073

Notes: Changes calculated over the years 1996 and 2006 when the data sources are the Agricultural Censuses of 1996 and 2006,

and over the years 2000 and 2010 when the data sources are the Population Censuses of 2000 and 2010. The unit of observation is

the AMC. Robust standard errors reported in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.

Table 10
The effect of agricultural technological change on manufacturing
Employment share, employment and wages

(1) (2) (3) (4) (5) (6)
∆ Employment ∆ Log ∆ Log

VARIABLES share 2010−2000 employment 2010−2000 wage 2010−2000

∆Asoy 0.023*** 0.021*** 0.218*** 0.186*** -0.032*** -0.024*
(0.002) (0.002) (0.018) (0.020) (0.012) (0.012)

∆Amaize -0.005*** -0.004*** -0.057*** -0.043*** 0.018*** 0.014**
(0.001) (0.001) (0.009) (0.009) (0.005) (0.005)

Share Rural Pop 1991 -0.006 0.011** -0.186*** 0.051 0.197*** -0.014
(0.004) (0.005) (0.044) (0.056) (0.026) (0.035)

Log Income per Capita 1991 0.002 0.093** -0.107***
(0.003) (0.037) (0.026)

Log Pop Density 1991 0.002** 0.020** -0.035***
(0.001) (0.008) (0.005)

Literacy Rate 1991 0.034*** 0.197* 0.093
(0.010) (0.117) (0.075)

Observations 4,149 4,149 4,149 4,149 4,149 4,149
R-squared 0.063 0.073 0.056 0.068 0.022 0.045

Notes: The unit of observation is the AMC. Robust standard errors reported in parentheses. Significance levels: *** p<0.01, **

p<0.05, * p<0.1.
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Table 11
The effect of agricultural technological change on employment shares

(1) (2) (3) (4)
∆ Employment share 2010−2000

VARIABLES Agriculture Manufacturing Services Other Sectors

∆Asoy -0.021*** 0.021*** -0.002 0.001
(0.002) (0.002) (0.002) (0.001)

∆Amaize 0.006*** -0.004*** -0.000 -0.001***
(0.001) (0.001) (0.001) (0.001)

Share Rural Pop 1991 -0.076*** 0.011** 0.043*** 0.023***
(0.007) (0.005) (0.005) (0.004)

Log Income per Capita 1991 0.014*** 0.002 -0.015*** -0.001
(0.004) (0.003) (0.003) (0.002)

Log Pop Density 1991 -0.000 0.002** 0.000 -0.002***
(0.001) (0.001) (0.001) (0.001)

Literacy Rate 1991 -0.012 0.034*** -0.009 -0.013*
(0.014) (0.010) (0.010) (0.007)

Observations 4,149 4,149 4,149 4,149
R-squared 0.073 0.073 0.103 0.045

Notes: Services include: construction, commerce, lodging and restaurants, transport, finance, housing services, domestic workers

and other personal services. Other sectors include: public administration, education, health, international organizations, extraction

and public utilities. The unit of observation is the AMC. Robust standard errors reported in parentheses. Significance levels: ***

p<0.01, ** p<0.05, * p<0.1.

Table 12
Variable factor endowment

(1) (2) (3) (4) (5) (6) (7)
∆ Agric. empl. ∆ Manuf. empl.

Migration rate 2010−2000 share 2010−2000 share 2010−2000

VARIABLES All Non-Frontier Frontier Non-Frontier Frontier Non-Frontier Frontier

∆Asoy -0.013*** -0.015*** -0.012** -0.023*** -0.020*** 0.023*** 0.019***
(0.004) (0.005) (0.006) (0.003) (0.004) (0.002) (0.004)

∆Amaize 0.006*** 0.007*** 0.003 0.008*** 0.003 -0.005*** -0.003*
(0.002) (0.002) (0.003) (0.001) (0.002) (0.001) (0.002)

Share Rural Pop 1991 -0.078*** -0.095*** -0.035* -0.081*** -0.061*** 0.019*** -0.004
(0.011) (0.014) (0.020) (0.008) (0.012) (0.006) (0.009)

Log Income per Capita1991 0.051*** 0.050*** 0.047*** 0.017*** 0.008 0.006 -0.003
(0.008) (0.009) (0.013) (0.005) (0.007) (0.004) (0.005)

Log Pop Density 1991 -0.006*** -0.002 -0.009*** -0.001 0.001 0.001 0.001
(0.002) (0.003) (0.003) (0.001) (0.002) (0.001) (0.001)

Literacy Rate 1991 0.009 0.018 0.079** -0.026 0.032 0.018 0.038**
(0.023) (0.027) (0.038) (0.017) (0.024) (0.012) (0.016)

Observations 4,149 2,617 1,532 2,617 1,532 2,617 1,532
R-squared 0.104 0.119 0.113 0.080 0.076 0.076 0.066

Notes: Municipalities that are part of the agricultural frontier are those that, between 1996 and 2006, experienced an increase in

agricultural land used for the cultivation of permanent crops, seasonal crops, and cattle ranching. Municipalities that are part of

the Agricultural Non-Frontier are those that experienced no increase, or a negative change, in used agricultural land between 1996

and 2006. The unit of observation is the AMC. Robust standard errors reported in parentheses. Significance levels: *** p<0.01,

** p<0.05, * p<0.1.
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Table 13
The effect of agricultural technological change on manufacturing
Employment share, employment and wages

Robustness to using a larger unit of observation: micro-regions

(1) (2) (3)
∆ Employment ∆ Log ∆ Log

VARIABLES share 2010−2000 employment 2010−2000 wage 2010−2000

∆Asoy 0.017*** 0.139*** -0.022
(0.004) (0.029) (0.016)

∆Amaize -0.003 -0.037*** 0.016**
(0.002) (0.013) (0.007)

Share Rural Pop 1991 0.014 0.017 -0.103
(0.012) (0.121) (0.089)

Log Income per Capita 1991 -0.002 0.058 -0.168**
(0.007) (0.088) (0.073)

Log Pop Density 1991 0.004*** 0.030*** -0.032***
(0.001) (0.011) (0.007)

Literacy Rate 1991 0.016 0.007 0.128
(0.021) (0.261) (0.180)

Observations 557 557 557
R-squared 0.101 0.107 0.239

Notes: The unit of observation is the micro-region. Robust standard errors reported in parentheses. Significance levels: ***

p<0.01, ** p<0.05, * p<0.1.

Table 14
The effect of agricultural technological change on manufacturing
Employment share, employment and wages

Robustness to excluding sectors directly linked to soy and maize

(1) (2) (3)
∆ Employment ∆ Log ∆ Log

VARIABLES share 2010−2000 employment 2010−2000 wage 2010−2000

∆Asoy 0.013*** 0.167*** -0.011
(0.002) (0.021) (0.016)

∆Amaize -0.004*** -0.057*** 0.010
(0.001) (0.009) (0.007)

Share Rural Pop 1991 0.012*** 0.042 -0.014
(0.004) (0.058) (0.044)

Log Income per Capita 1991 -0.002 0.075* -0.117***
(0.002) (0.038) (0.027)

Log Pop Density 1991 0.003*** 0.034*** -0.040***
(0.000) (0.008) (0.006)

Literacy Rate 1991 0.025*** 0.086 0.144*
(0.007) (0.124) (0.084)

Observations 4,149 4,134 4,059
R-squared 0.037 0.042 0.030

Notes: Manufacturing sectors directly linked to soy and maize are: food and beverages (code 15), manufacturing of other chemicals

(code 24090) and manufacturing of goods from refined oil (code 23020). The unit of observation is the AMC. Robust standard

errors reported in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. The number of observations in columns 2 and

3 is smaller because in some municipalities sectors directly linked to soy and maize account for the whole manufacturing sector.
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