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Abstract

When long maturity bonds are traded frequently and rational traders have non-nested in-

formation sets, speculative behavior arises. Using a term structure model displaying such

speculative behavior, this paper demonstrates that (i) dispersion of expectations about fu-

ture short rates is sufficient for individual traders to systematically predict excess returns

and (ii) the new term structure dynamics driven by speculative trade is orthogonal to public

information in real time, but (iii) can nevertheless be quantified using only publicly avail-

able yield data. Speculative dynamics are found to be quantitatively important, potentially

accounting for a substantial fraction of the variation of US bond yields.
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1. Introduction

When long bonds are traded before they mature, the price an individual trader will be

willing to pay for a bond depends on how much he thinks other traders will be willing to pay

for it in the future. If traders have access to different information, this price may differ from

what an individual trader would be willing to pay for the bond if he had to hold it until it

matures and “speculative behavior” in the sense of Harrison and Kreps (1978) arises. That

is, the possibility of reselling a bond changes its equilibrium price as traders exploit what

they perceive to be market misperceptions about future short rates.

In this paper we present a term structure model populated with rational traders that

engage in the type of speculative behavior described above. We use this model to argue

that relaxing the assumption that all traders have access to the same information introduces

empirically relevant new dynamics to the term structure of interest rates. More specifically,

we show that (i) non-nested information sets imply that individual traders can systematically

predict excess returns and (ii) individual traders can predict and take advantage of other

traders’ prediction errors even though no trader on average is better informed than other

traders.

In the absence of arbitrage, expected returns in excess of the risk free rate must be com-

pensation for risk. In the model, individual traders can identify bonds that conditional on

their own information sets have a positive expected excess return. Traders will hold more of

the bonds with a higher expected return in their portfolios and in equilibrium, the increased

riskiness of a less balanced portfolio is exactly off-set by the higher expected return. The

speculative behavior caused by private information thus gives rise to a novel source of time

variation in risk premia that is complementary to, but conceptually distinct from existing

theories. Particularly, in a rational setting, time variation in risk premia due to speculative

trade must be orthogonal to all public information in real time.
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Despite the fact that the speculative dynamics are orthogonal to public information, we

can both quantify their importance as well as back out an estimated historical time series

of their evolution in the past. This is possible since we as econometricians have access to

the full sample of data and the speculative term is orthogonal only to public information

available to traders in real time. That is, we can use public information available in period

t + s : s > 0 to back out an estimate of the speculative term in period t. The estimated

model suggests that speculative dynamics are potentially quantitatively important and can

explain a substantial fraction of the variation in US bond yields.

A necessary condition for traders to have any relevant private information about future

bond yields is that bond prices do not perfectly reveal the state of the economy. Recent

statistical evidence appear to support this view. In a few closely related papers, Cochrane

and Piazzesi (2005, 2008), Joslin, Priebsch and Singleton (2010) and Duffee (2008) present

evidence suggesting that the factors that can be found by inverting yields are not sufficient

to optimally predict future bond returns. They find that while the usual level, slope and

curvature factors explain virtually all of the cross sectional variation in yields, additional

factors are needed to forecast excess returns. Ludvigson and Ng (2009) provide more evidence

that current bond yields are not sufficient to optimally forecast bond returns. They show

that drawing on a very large panel of macroeconomic data helps predict deviations from the

expectations hypothesis, or equivalently, future excess returns, compared to using only yield

data. Stated another way, these statistical models all suggest that linear combinations of

current bond yields are not sufficient to predict future bond yields optimally.

In addition to the empirical evidence cited above, we also have a priori reasons to believe

that bond prices should not reveal all information relevant to predicting future bond returns.

Grossman and Stiglitz (1980) argued that if it is costly to gather information and prices are

observed costlessly, prices cannot fully reveal all information relevant for predicting future

returns. For the bond market, the most important variable to forecast is the short interest

rate. In most developed countries, the short interest rate is set by a central bank that



4 KRISTOFFER P. NIMARK

responds to macroeconomic developments. If it is costly to gather information about the

macro economy, Grossman and Stiglitz’s argument implies that bond prices cannot reveal

all information relevant to predict future bond returns.

If prices do not reveal all information relevant for predicting bond returns, it becomes more

probable that traders have non-nested information sets, that is, traders will have access to

and use different information when trading.1 With the exceptions of bond prices, statements

by central bank officials and some well publicized macroeconomic data releases, it is hard

to think of sources of information that are public in the strong common knowledge sense

of the word. In this paper we allow for traders to have private information that they can

exploit when trading. This also seems to accord well with casual observation that at least

one motive for trade in assets is possession of information that is not, or at least is not

believed to be, already reflected in prices.

One implication of non-nested information sets is that expectations across individual

traders will differ which provides us with another way of gauging the plausibility of this

assumption. While bond traders’ expectations are unobservable, Swanson (2006) presents

evidence that professional forecasters’ expectations of future interest rates are surprisingly

widely dispersed. Citing numbers from the Blue Chip Survey of professional forecasters from

1992-2004, Swanson reports that the spread between the 10th and the 90th percentile of in-

dividual forecasts of the 3-month Treasury Bill rate 4 quarters ahead fluctuates between 80

and 220 basis points.

There is a growing literature analyzing asset pricing models under non-nested information

sets (or one of its synonyms, see Footnote 1). Singleton (1987) is an early reference of a

dynamic asset pricing model with an information structure similar to the one presented

here. More recent examples include papers by Allen, Morris and Shin (2005), Kasa, Walker

1What I in this paper call non-nested information sets is also known as disparately informed traders (Single-
ton 1987), private information (Sargent 1991), heterogenous information (Bacchetta and van Wincoop 2006),
dispersed information (Angeletos and Pavan 2009) and imperfect common knowledge (Woodford 2002, Adam
2006 and Nimark 2008). The term non-nested information connects naturally to the language of orthogonal
projections used in this paper.
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and Whiteman (2008), Bacchetta and van Wincoop (2006, 2007), Cespa and Vives (2009)

and Makarov and Rytchkov (2012). These papers either present purely theoretical models

or models calibrated to explain some feature of the data. In this paper, we estimate the

model directly using Bayesian methods with uniform priors truncated only to ensure that

the model is stationary and that variances are non-negative. To the best of my knowledge,

this is the first paper to estimate a model with non-nested information sets. The fit of

the model is surprisingly good and compares favorably to the fit of a standard affine three

factor no-arbitrage model. The model is also used to quantify the cross-sectional dispersion

of expectations implied by the posterior parameter estimates. A small implied dispersion

across traders of short rate expectations is found to be sufficient to generate quantitatively

important speculative dynamics in bond yields.

The estimated model displays similar dynamics to those documented by Duffee (2008)

and Cochrane and Piazzesi (2005, 2008). Factors that play practically no role in explaining

the cross section of bond yields have predictive power for future yields. This is arguably

an intrinsic feature of models with imperfectly informed traders. If the true state of the

economy could be summarized by three factors that are an exact linear function of yields, no

other factor could possibly add predictive power. We demonstrate that the model presented

here can account for the evidence in Duffee (2008) by computing Duffee’s impulse responses

estimated on artificial data generated from our model.

In this paper, dispersion of expectations about returns are caused by rational traders

observing different signals. Alternative approaches to model disagreement, or differences

in beliefs, falls broadly into two different categories. One category consists of papers that

model agents as boundedly rational, e.g. Scheinkman and Xiong (2003) who assume that

two different groups of traders have different degrees of overconfidence in the precision of

a commonly observed signal. Chen, Joslin and Tran (2010) propose a flexible affine term

structure framework for modeling differences in beliefs in which at least one group of traders

do not form model consistent expectations. Another example of the boundedly rational
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approach is Xiong and Yan (2009) who like the present paper analyze a term structure model.

In their paper, two groups of traders misinterpret an uninformative signal as being helpful

in predicting future inflation. Since the two groups of agents have different subjective beliefs

about the correlation between the uninformative signal and the inflation process, they will

have different subjective beliefs about future inflation and the real return on bonds. While

these models provide interesting theoretical insights, some of their maintained assumptions

have implications that make them less attractive for empirical work. For instance, in the

model of Xiong and Yan (2009), conditioning only on bond prices is sufficient to partly

predict the forecast errors of the traders in their model. Using such a model for empirical

work would imply that as econometricians, we believe that we could make bigger profits

than the traders inside the model simply by conditioning on publicly available bond prices.

In contrast, in the empirical exercise of the present paper, the information set we exploit

as econometricians is a strict subset of the information set of the traders inside the model.

Arguably, that traders inside the model use the information contained in prices efficiently is

an attractive feature of a fully rational approach.

In a second class of difference in beliefs models, traders learn rationally from commonly

observed signals, but have different expectations due to different prior beliefs. Some ex-

amples of this approach include Morris (1996), Basak (2005), Buraschi and Jiltsov (2006)

and Gallmeyer and Hollifield (2008). As pointed out by Morris (1995), assuming different

information sets is no less ad hoc than assuming different priors and rationality by itself

does not imply that agents must have the same priors. Yet, there might be reasons to prefer

modeling differences in expectations as arising from differences in information rather than

from different priors. Unless additional strong assumptions are made, rational learning from

common signals implies that beliefs will converge over time. Assuming that differences in

beliefs arise solely from different initial priors is thus not suitable for modeling phenomena

that do not subside over time.
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In the literature that uses difference in beliefs models, it is common to assume that the

differences in beliefs are common knowledge, that is, individual investors knows not only

their own beliefs but also the beliefs held by all other traders (and everybody knows that

this to be the case, and so on). This is practical from a modeling perspective since it implies

that traders do not need to extract information about the beliefs of others from endogenous

variables such as asset prices, and it avoids the difficulties arising from modeling traders

as forecasting the forecasts of others. But it also have the less appealing implication that

predicting other traders’ actions is from the individual trader’s perspective no more difficult

than predicting his own actions. Also, while Morris (1995) argues that rationality by it

self does not rule out different priors, it is less clear that commonly known but different

priors is consistent with rationality. If the priors are informative about the variables of

interest, all rational traders should condition their predictions also on other traders priors.

But then the pool of different priors is like a pool of public signals, and cannot be the basis

for disagreement. On the other hand, if the prior beliefs are not informative, it is not clear

why a rational trader would attach any weight to them.

There is also empirical evidence supporting modeling dispersion as arising from imper-

fect information rather than boundedly rational differences in beliefs. Coibion and Gorod-

nichenko (2011) find that using data from the the Survey of Professional Forecasters, it is

possible to reject the hypothesis that survey respondents are rational and have full informa-

tion. However, it is not possible to reject the hypothesis that the forecasters are rational but

imperfectly informed.

Based on these considerations, the next section presents a simple bond pricing model in

which rational traders have non-nested information sets. In subsequent sections, this model

will be used to study both the theoretical as well as the empirical properties of speculative

dynamics in the term structure of interest rates.
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2. A Bond Pricing Model

This section presents a simple bond pricing model. Traders are risk averse, rational and

ex ante identical but may observe different signals relevant for predicting future bond prices.

They choose a portfolio of risky bonds in order to maximize next period wealth. Traders that

have observed signals that make them more optimistic about the return of a given bond will

hold relatively more of that bond in their portfolio and in equilibrium, the increased riskiness

of a less balanced portfolio is exactly offset by a higher expected return. Equilibrium bond

prices are a function of the average expectations of the price of the same bond in the next

period, discounted by the risk free short rate and supply shocks that prevents equilibrium

prices from revealing the average expectation of future bond prices. The simplicity of the

model helps to highlight the consequences for term structure dynamics of relaxing the as-

sumption that traders all have access to the same information. In later sections we will use

the model to show that private information may be a source of excess returns and that the

speculative dynamics it gives rise to must be orthogonal to public information in real time.

2.1. Demand for long maturity bonds. As in Allen, Morris and Shin (2006) there are

overlapping generations of agents who each live for two periods. Time is discrete and indexed

by t. Each generation consists of a continuum of households with unit mass. Each household

is endowed with one unit of wealth that it invests when young. When old, households unwind

their asset positions and consume. Unlike in the model of Allen et al, the owners of wealth,

i.e. the households, do not trade assets themselves. Instead, a continuum of traders, indexed

by j ∈ (0, 1), trade on behalf of the households, with households diversifying their available

funds across the continuum of traders. While not modeled explicitly here, this set up can be

motivated as a perfectly competitive limit case of the monopolistically competitive mutual

funds model of Garcia and Vanden (2009) that allow uninformed households to benefit from

mutual funds private information, while diversifying away idiosyncratic risk associated with

individual funds. More importantly, the assumption that the ownership of the assets is
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separated from the privately informed agents that are doing the trading keeps the model

tractable by shutting down information induced wealth dynamics.2

Trader j invests one unit of wealth in period t on behalf of all households born in period

t. In period t+ 1 trader j unwinds the position of the now old generation of households who

then use the proceeds to consume. Traders are infinitely lived and perform the same service

for the next generation of households.

There are two types of assets. A risk free one period bond with (log) return rt and risky

zero-coupon bonds of various maturities. Trader j chooses a vector of portfolio weights at(j)

in order to maximize the discounted expected log of wealth under management Wt+1(j) in

period t+ 1. That is, trader j solves the problem

max
at(j)

E [logWt+1(j) | Ωt(j)] (2.1)

subject to

Wt+1(j) = 1 + rpt (j) (2.2)

where Ωt(j) denotes trader j’s information set and rpt (j) is the log return of the portfolio

chosen by trader j in period t. In the model presented below, equilibrium log returns of

individual bonds are normally distributed. However, the log return on a portfolio of assets

with individual log normal returns is not normally distributed. Following Campbell and

Viceira (2002a, 2002b) we therefore use a second order Taylor expansion to approximate the

log excess portfolio return as

rpt (j)− rt = a′t(j)
(
b−t+1 − bt − rt

)
+

1

2
a′t(j)diag [Σb,t(j)]−

1

2
a′t(j)Σb,t(j)at(j) (2.3)

where bt is a vector of (log) bond prices for bonds of different maturities. The vector b−t+1

contains the prices of the same bonds in the next period when they have one period less to

maturity and rt is a conformable vector in which each element is the risk-free rate rt. The

2Readers interested in the interaction between wealth dynamics and heterogenous beliefs can consult Xiong
and Yan (2009) who analyze this issue in a model with boundedly rational traders.
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difference b−t+1−bt−rt is thus a vector of excess returns on bonds of different maturities. The

matrix Σb,t(j) is the covariance of log bond returns conditional on trader j’s information set.

In the next section, we give general conditions for traders’ information sets that are sufficient

to generate speculative behavior. In the empirical part of the paper we will be explicit about

the exact nature of traders’s information sets and specify processes for the short interest

rate rt and traders’ information sets Ωt(j) such that in equilibrium, conditional returns are

normally distributed, time invariant and with a common covariance across all traders. We

therefore suppress the subscripts and trader indices on the conditional return covariance

matrix and write Σb instead of Σb,t(j) for all t and j. We will also maintain the assumption

throughout the paper that current bond prices bt and the current short rate rt are observed

perfectly by all traders so that

{bt, rt} ∈ Ωt(j) ∀ j (2.4)

Maximizing the (second order Taylor approximation) of the expected return (2.3) on wealth

under management by trader j with respect to at(j) then gives the optimal portfolio weights

at(j) = Σ−1
b

(
E
[
b−t+1 | Ωt(j)

]
− bt − rt

)
+

1

2
Σ−1

b diag [Σb] (2.5)

Since each trader j has one unit of wealth to invest, taking average across traders of the

portfolio weights (2.5) yields the aggregate demand for bonds.

2.2. Bond supply. The vector of bond supply st is stochastic

st = Σ−1
b vt : vt ∼ N (0,Σv) (2.6)

where to simplify notation, the vector of supply shocks vt are normalized by the inverse of

the conditional variance of bond prices Σ−1
b . The supply shocks vt play a similar role here as

the noise traders in Admati (1985). That is, they will prevent equilibrium prices from fully

revealing the information held by other traders. While there may be some uncertainty about

the total number of bonds outstanding, an economically more appealing interpretation of
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the supply shocks is in terms of effective supply, as argued by Easley and O’Hara (2004).

They define the “float” of an asset as the actual number of assets available for trade in a

given period.

2.3. Equilibrium bond prices. Equating aggregate demand
∫

at(j)dj and supply st

Σ−1
b vt = Σ−1

b

(∫
E
[
b−t+1 | Ωt(j)

]
dj − bt − rt

)
+

1

2
Σ−1

b diag [Σb] (2.7)

and solving for the vector of current log bond prices bt gives

bt =
1

2
diag [Σb]− rt+

∫
E
[
b−t+1 | Ωt(j)

]
dj − vt (2.8)

A generic element of bt is thus the log price bnt of an n periods to maturity zero coupon bond

given by

bnt = αn − rt +

∫
E
[
bn−1
t+1 | Ωt(j)

]
dj − vnt (2.9)

where αn and vnt are the relevant elements of 1
2
diag [Σb] and vt respectively. The price of an

n periods to maturity bond in period t thus depends on the average expectation in period

t of the price of a n− 1 period bond in period t + 1. The more a trader expects to be able

to sell a bond for in the future, the more is he willing to pay for it today. However, risk

aversion prevents the most optimistic trader from demanding all of the available supply.

2.4. The term structure of interest rates. The bond price formula (2.9) can be used

to price any maturity bond. The procedure is similar to deriving bond prices under a no

arbitrage assumption, though we need to be more careful in specifying the timing of the

information sets that the expectations that govern prices are conditioned on. As usual, we

can start from

b1
t = −rt (2.10)
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and apply (2.9) recursively. The log price of a two period bond then is

b2
t = α2 − rt −

∫
E [rt+1 | Ωt(j)] dj + v2

t (2.11)

The price of a three period bond according to (2.9) is given by the average expectation of

the price of a two period bond in t + 1, discounted by the short rate rt. Leading (2.11) by

one period and substituting into (2.9) with n = 3 gives

b3
t = α2 + α3 − rt −

∫
E [rt+1 | Ωt(j)] dj (2.12)

−
∫
E

[∫
E [rt+2 | Ωt+1(j′)] dj′ | Ωt(j)

]
dj

+v3
t

Applying the same procedure recursively to derive the price of an n periods to maturity

bond gives

bnt =
n∑

i=2

αn − rt −
∫
E [rt+1 | Ωt(j)]− (2.13)

∫
E

[∫
E [rt+2 | Ωt+1(j′)] dj′ | Ωt(j)

]
dj + ...

...+

∫
E

[∫
E

[
...

∫
E [rt+n−1 | Ωt+n−2(j′′)] dj′′... | Ωt+1(j′)

]
dj′ | Ωt(j)

]
dj + vnt

The yield of a bond with n periods to maturity is (as usual) given by dividing the log bond

price by n

ynt = −n−1bnt . (2.14)

2.5. Deviations from means. The unconditional mean of bond prices are assumed to be

known to the traders. Since we are primarily interested in the effects of information on the

dynamics of bond yields we will conduct most of the analysis in terms of deviations of the

log price from its (known) mean. We therefore define the log deviation b̃nt of the bond price
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as

b̃nt ≡ bnt − µn
b (2.15)

where µn
b ≡ E [bnt ] . Similarly, define the deviation of the short interest rate rt from its mean

µr

r̃t ≡ rt − µr (2.16)

where µr ≡ E [rt] . Subtracting µn
b and µr from (2.13) and substituting into the expression

(2.14) of bond yields give the deviation of an n period bond yield from its mean

ỹnt = −n−1b̃nt . (2.17)

As has been noted before (e.g. Allen, Morris and Shin (2006)), the fact that (2.13) contains

average expectations of average expectations (and so on) prevents us from applying the law

of iterated expectations to solve for bond prices if traders have non-nested information sets.

Before analyzing the consequences of this, we first establish that in the absence of supply

shocks and with only common information, the model does indeed imply that the expectation

hypothesis hold. Below, the properties of orthogonal projections will be used extensively and

we therefore first define orthogonal projections and the relevant inner product space.

2.6. Projections and a common information benchmark. In the next section, the

properties of orthogonal projections will be used to analyze the implications of non-nested

information sets. However, we first apply some of these tools to the familiar case where all

traders share the same information set. This section can thus be thought of as a benchmark,

confirming that in the absence of private information the model implies that the expectation

hypothesis hold. (For readers unfamiliar with orthogonal projections, the Appendix lists

some of the properties that will be particularly useful below. For more details see Brockwell

and Davis (2006).)

In the model presented below, all bond yields, the factors that drive them and the signals

that traders observe will be elements of the inner product space L2, which we now define.
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Definition 1. (The inner-product space L2.) The inner product space L2 is the collection C

of all random variables X with finite variance

EX2 <∞ (2.18)

and with inner-product

〈X, Y 〉 ≡ E (XY ) : X, Y ∈ L2 (2.19)

Definition 2. Let Ω be a subspace of L2. An orthogonal projection of X onto Ω , denoted

PΩX, is the unique element in L2 satisfying

〈X − PΩX,ω〉 = 0 (2.20)

for any ω ∈ Ω.

In a linear model with Gaussian shocks, conditional expectations are equivalent to orthog-

onal projections. We can thus use the equality

E (X | Ω) = PΩX (2.21)

to replace the conditional expectations in the bond pricing equation (2.13) with projections

and rephrase the expectation hypothesis in the following way.

Definition 3. (The Expectations Hypothesis.) The expectations hypothesis of the term struc-

ture of interest rates is said to hold with respect to Ωt if the implied forward rate

fn
t ≡ b̃nt − b̃n+1

t (2.22)

equals the projection of the short rate in period t+ n onto Ωt

fn
t = PΩtr̃t+n ∀t, n (2.23)
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This is a standard definition of the expectation hypothesis (e.g. Backus, Foresi, Mozumdar

and Wu, 2001), apart from the explicit reference to the information set expectations are

conditioned on.

We can use the definition (2.23) to demonstrate that in the absence of supply shocks,

the bond pricing equation (2.13) implies that the expectations hypothesis holds if all agents

share the same information set. Consider the 2 period ahead forward rate which by (2.13)

and (2.22) is given by

f 2
t = b̃3

t − b̃2
t

=

∫
E

[∫
E [r̃t+2 | Ωt+1(j′)] dj′ | Ωt(j)

]
dj (2.24)

For now, let Ωt(j) = Ωt for all j, that is, let the information set Ωt be common across all

traders. If traders do not forget, the sequence of information sets {Ωt}∞t=0 is a filtration

so that Ω0 ⊆ Ω1 ⊆ Ω2... ⊆ Ωt. It is a property of projections that repeated projections

onto nested information sets reduces to the projection onto the smallest information set, i.e.

PΩtPΩt+sX = PΩtX for s ≥ 0. This is simply the law of iterated expectations and implies

that traders cannot predict in period t how they will revise their expectation in period

t+ 1 of the period t+ 2 short rate. Stated differently, the sequence {E [r̃t+n | Ωt+s]}ns=0 is a

martingale. Applying this result to the bond pricing equation (2.24) gives

f 2
t = PΩt (PΩt+1r̃t+2) (2.25)

= PΩtr̃t+2 (2.26)

The expectation hypothesis then holds for a three period bond with respect to the common

information set Ωt. A similar argument can be generalized to an n-period bond.

In the next section we analyze how the dynamics of the term structure changes when

traders have non-nested information sets. The direct link between forward rates and expec-

tations about future short rates make it more convenient to frame the analysis in terms of
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forward rates rather than bond yields. Of course, bond yields can always be backed out from

implied forward rates by the identity (2.22).

3. Non-nested information sets and the term structure of interest rates

In the previous section, the fact that rational traders cannot predict the direction in which

they will revise their own expectations in the future allowed us to solve for bond prices as

a function of the common period t expectation about future short rates. With non-nested

information sets, predictions about the expectations of others are distinct from one’s own

expectations. If a trader’s current prediction about future short rates differ from his expec-

tation about other traders’ predictions, it is rational for him to believe that other traders in

the future will revise their predictions in the direction towards what he considers the best

prediction, as more information becomes available. This section draws out the consequences

of this fact for the term structure and contains the main theoretical contributions of the

paper.

First, it is demonstrated that dispersed expectations about future short rates is sufficient

for traders to be able to predict excess returns, even though risk premia are constant in

the model. Secondly, we show that with non-nested information sets, individual traders can

predict the average prediction error made by others which introduces speculative behavior

in the sense of Harrison and Kreps (1978). Third, it is shown that the speculative dynamics

introduced by non-nested information sets are orthogonal to public information which has

interesting implications for how the speculative dynamics can (and cannot) be quantified

using public bond price data. We start by defining what it means for information sets to be

non-nested.

Definition 4. The subspace Ωt(j) is the space spanned by the history of variables observed

by trader j at period t. Projections onto Ωt(j) are denoted Pt,j.
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Definition 5. The information sets for traders j, i ∈ (0, 1) are said to be non-nested if and

only if

Pt,j r̃t+n 6= Pt,ir̃t+n : j 6= i (3.1)

for at least some t = 0, 1, 2... and some n = 1, 2, ...

Information sets are thus said to be non-nested if two traders in at least some period t

disagree about the best prediction of the short rate in period t+ n. Defining non-nested in-

formation sets through the implications for projections of short rates onto individual trader’s

information sets is somewhat tailored to the needs of this paper. For instance, a more gen-

eral definition may include information about second moments of the distribution of rt since

these also matter for bond prices. However, all higher moments are assumed to be constant

and common knowledge among traders.

3.1. Predictable excess returns. We start by proving that non-nested information sets

are sufficient for individual traders to be able to predict excess returns. We do this in two

steps. First, we show that if individual traders’ projections of future short rates are dispersed,

then the n period forward rate fn
t cannot coincide generally with traders’ expectations about

the corresponding future short rates.

Lemma 1. The forward rate fn
t is agent j’s optimal prediction of the short rate n peri-

ods ahead, if and only if it coincides with the orthogonal projection of r̃t+n onto trader j’s

information set Ωt(j) so that

Pt,j r̃t+n = fn
t (3.2)

holds. The equality (3.2) can only hold generally, i.e. for all traders at all times, when

traders’ information sets coincide.

Proof. The first half of the proposition holds by the optimality and uniqueness of orthog-

onal projections. The second half states that Pt,j r̃t+n = fn
t can hold generally only when
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Figure 1. Dispersion of expectations of the short rate in period t+n and the
implied forward rate.

information sets are nested. To see why this is true, note that if

Pt,j r̃t+n = fn
t ∀ j, t, n

then the ex ante symmetry of traders implies that

Pt,j r̃t+n = Pt,ir̃t+n ∀ j, i, t, n (3.3)

or that the forward rate fn
t is the best predictor of r̃t+n for trader j at all times t and

at all horizons n only when it is also the best prediction for all others traders, i.e. when

information sets are nested. �

In words, Lemma 1 simply states that if the distribution across traders of expected future

short rates is non-degenerate, all points on the support of the distribution cannot coincide

with the forward rate, which is a single number. This is illustrated in Figure 1 and may seem

like an obvious statement, but the uniqueness of orthogonal projections makes it nevertheless

interesting. To see why, note that by the uniqueness of orthogonal projections, Pt,j r̃t+n 6= fn
t
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implies that Pt,j (r̃t+n − fn
t ) 6= 0, i.e. trader j can systematically predict the forecast error

a person would make who used the forward rate as a forecast of the short rate. The next

proposition shows that this in turn implies that traders can systematically predict excess

returns.

Definition 6. (Excess return) The excess return on an n period bond is the difference in

return between holding an n period bond until maturity and the return on holding a sequence

of one period bonds over n periods, i.e.

−b̃nt − (r̃t + r̃t+1 + ...r̃t+n−1) (3.4)

An alternative (and more common) definition of excess returns would be to define it as

the difference in return of holding an n period bond for one period minus the one period

yield

b̃n−1
t+1 − b̃nt − r̃t (3.5)

This definition is equivalent to (3.4) in the sense that if the expectations hypothesis hold,

expected excess returns will be zero according to both definitions (see Singleton 2006). The

definition (3.4) is somewhat more convenient to work with in the present setting, but either

definition could be used without changing the substance of the results presented below. We

now use the result from Lemma 1 to show that non-nested information sets imply that

individual traders can predict excess returns.

Proposition 1. If traders’ information filtrations are non-nested, excess returns are pre-

dictable by trader j for at least some maturity n∗.

Proof. Excess returns on an n∗-period bond are predictable with respect to trader j’s infor-

mation set if

Pt,j

(
−b̃n∗t − (r̃t + r̃t+1 + ...r̃t+n∗−1)

)
6= 0 (3.6)
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for some t. From the identity

−b̃n∗t ≡ r̃t + f 1
t + ...+ fn∗−1

t (3.7)

excess returns on an n∗ period bond are thus predictable if

n∗−1∑
s=1

Pt,j r̃t+s 6=
n∗−1∑
s=1

f s
t (3.8)

We know from Lemma 1 that Pt,j r̃t+n 6= fn
t holds for at least some, t, n and j if information

sets are non-nested. To prove the proposition we need to show that this in turn implies

that the inequality (3.8) must be true for at least some maturity n∗. The proposition holds

trivially for n = 2 since the inequality (3.8) then is true by assumption. For n > 2, consider

the case when (3.8) is an equality at maturity n+ 1 so that

n∑
s=1

Pt,j r̃t+s =
n∑

s=1

f s
t (3.9)

which can equivalently be written as

n−1∑
s=1

Pt,j r̃t+s + Pt,j r̃t+n =
n−1∑
s=1

f s
t + fn

t (3.10)

Since by assumption, Pt,j r̃t+n 6= fn
t we must have that

n−1∑
s=1

Pt,j r̃t+s 6=
n−1∑
s=1

f s
t (3.11)

which implies that excess returns on an n∗ = n period bond is predictable. To complete the

proof, it is sufficient to note that the proposition is trivially true for n∗ = n+ 1 if (3.9) fails

to hold. That is, if Pt,j r̃t+n 6= fn
t excess returns cannot simultaneously be unpredictable for

bonds of both maturity n and n+ 1. �

In the absence of arbitrage, predictable excess returns must be earned as compensation for

risk and this is true also in the present model. Risk aversion prevents a trader from wanting
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to hold an infinite amount of the bond with the highest expected return. In equilibrium, the

expected excess return as perceived by an individual trader is just enough to compensate

for the increased riskiness of holding a less balanced portfolio. Private information thus

introduces time variation in risk premia. The magnitude of the predictable component of

excess returns caused by private information will be discussed in terms of conditional Sharpe

Ratios in Section 4 below.

3.2. Non-nested information sets and speculative trade. Proposition 2 demonstrated

that a non-degenerate distribution of short rate expectations is sufficient for excess returns

to be predictable by individual traders. The next propositions helps us understand more

about the dynamics introduced to the term structure by non-nested information sets and

how these dynamics relate to public and private information. First, we demonstrate that

non-nested information sets imply that individual traders can predict the average prediction

errors made by other traders.

Proposition 2. Non-nested information sets imply that an individual trader j can system-

atically predict the average period t+ s projection error of the short rate in period t+n, that

is

Pt,j

(
r̃t+n −

∫
Pt+s,j′ r̃t+ndj

′
)
6= 0 (3.12)

if Ωt(j) 6⊆ Ωt+s(i) and Ωt(i) 6⊆ Ωt+s(j) for s = 0, 1, 2...n− 1 and all j 6= i ∈ (0, 1).

Proof. The expression (3.12) can be rearranged to

Pt,j r̃t+n = Pt,j

∫
Pt+s,j′ r̃t+ndj

′. (3.13)

Since traders do not receive signals that are informative about the idiosyncratic noise in

other traders’ signals, we have that

Pt,j

∫
Pt+s,j′ r̃t+ndj

′ = Pt,jPt+s,ir̃t+n : i 6= j. (3.14)
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That is, an individual trader j’s expectation about average expectations coincide with his

expectation of trader i’s expectation for any i 6= j. By property (4) of projections we know

that

Pt,j r̃t+n = Pt,jPt+s,ir̃t+n (3.15)

if and only if Ωt(j) ⊆ Ωt+s(i) which contradicts the definition of non-nested information sets

and completes the proof. �

Proposition 2 showed that individual traders can systematically predict the average pre-

diction error made by other traders. To see how this induces speculative behavior, consider

an example with n = 2 and s = 0 in (3.12) and

Pt,j

(
r̃t+2 −

∫
Pt,j′ r̃t+2dj

′
)

= ∆ (3.16)

where ∆ > 0 so that trader j’s expectation about r̃t+2 is higher than what he thinks the

current average expectation of r̃t+2 is. Since trader j knows that other traders will receive

new information in period t + 1, he thinks that other traders on average will revise their

expectations in period t + 1 towards what trader j considers the best prediction of r̃t+2 so

that

Pt,j

(
r̃t+2 −

∫
Pt+1,j′ r̃t+2dj

′
)
< ∆ (3.17)

A positive ∆ thus implies that trader j believes that other traders will revise their expecta-

tions of r̃t+2 upward in t+ 1

Pt,j

∫
Pt+1,j′ r̃t+2dj

′ > Pt,j

∫
Pt,j′ r̃t+2dj

′ (3.18)

and trader j′s expectation of the one period return on a 3 period bond (̃b2
t+1 − b̃3

t ) is lower

than his expectation about other traders expectations about the one period return, since by

(2.11) the price of a 2 period bond in t+ 1 depends negatively on the average expectation in
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t+ 1 of r̃t+2.
3 Ceteris paribus, for a positive ∆ trader j expects to hold less than the average

trader of the 3 period bond, as he thinks others on average expects it to have a higher return.

A symmetric argument holds if ∆ is negative.

3.3. Forward rates and average higher order prediction errors. So far, we have dis-

cussed the implications of non-nested information sets from the perspective of the individual

trader. We now turn to the implications of non-nested information sets for aggregate bond

prices, or more specifically, for implied forward rates. In the next proposition, we show

that the speculative dynamics introduced by non-nested information sets can be expressed

as average predictions about higher order prediction errors of future short rates. That is,

predictions about the difference between future short rates and other traders’ predictions

about future short rates.

Proposition 3. The forward rate fn
t can be decomposed into the the average first order

projection of r̃t+n, a sum of higher order projection errors and the exogenous supply shocks

vnt and vn+1
t .

Proof. For convenience, first define the notation

n−1∏
s=0

∫
Pt+s,j r̃t+n ≡

∫
Pt,j

∫
Pt+1,j′ ...

∫
Pt+n−1,j′′ r̃t+ndj

′′...dj′dj. (3.19)

and apply it to the definition of the n period forward rate (2.22) and bond prices (2.13) to

get

fn
t =

n−1∏
s=0

∫
Pt+s,j r̃t+n +

(
vnt − vn+1

t

)
. (3.20)

3The argument will hold as long as there is not a perfect negative correlation between revisions to∫
Pt+s,j′rt+1 and

∫
Pt+s,j′rt+2 for s = 0, 1.
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Add and subtract
∫
Pt,j r̃t+n from the r.h.s. of (3.20) to get

fn
t =

∫
Pt,j r̃t+n (3.21)

−
∫
Pt,j

(
r̃t+n −

n−1∏
s=0

∫
Pt+s,j r̃t+n

)
︸ ︷︷ ︸

n−1 order prediction error

+
(
vnt − vn+1

t

)
�

The term on the second line of (3.21) is the average prediction of the n−1 order prediction

error, i.e. the average prediction of the difference between the actual short rate in period

t+n and the n−1 order expectation of the short rate in period t+n.4 The expression (3.21)

thus demonstrates that forward rates do not necessarily reflect average expectations about

future short rates.

In a model with perfect or common information, the higher order prediction errors on

the second line of (3.21) would of course be zero and the n period forward rate would be a

function of only the period t average expectation of the the short rate in period t+n (and the

exogenous supply shocks). This would also be true in a model where bonds are only traded

when they are issued and then held until maturity. In such a setting, the expectation of other

traders’ expectations would not matter for the equilibrium price, since the price of a zero

coupon bond at maturity is simply its face value, which is known to all traders. The price

of the bond at the date of issue would then simply be such that the return on an n period

bond equals the expected return on the alternative investment. (By imposing this condition

for all maturities n, it can be shown that this alternative return is the average expectation

of the cumulative return of holding a series of one period bonds for n periods.) The new

4In a different context, Bacchetta and Wincoop (2006) shows that a similar term (which they label the “higher
order wedge”) can be expressed as an average expectation error of the innovations to the fundamental process
in their model.



SPECULATIVE DYNAMICS IN THE TERM STRUCTURE 25

dynamics introduced to the term structure by non-nested information sets contained in the

higher order prediction error term is thus dependent on the fact that long bonds are traded

frequently. This is also the sense in which the “speculative behavior” in this model conforms

to the definition of Harrison and Kreps (1978).

There are also some differences between the model presented here and the set up of Har-

rison and Kreps (1978) that are worth noting. The most important of these is perhaps that

Harrison and Kreps rule out short sales, with the implication that the price of the asset in

their model is bounded below by what any single trader would be willing to pay for it, were

he to hold on to the asset forever. In our model, there are no short sales constraints and

the price of a bond can be either above or below what the equilibrium price would be if the

bond could not be traded before maturity.

3.4. Speculative dynamics and public information. It is straightforward to show that

the speculative dynamics due to higher order prediction errors are orthogonal to public

information. Before proving this statement, we first define two relevant information sets.

Definition 7. The subspace Ωp
t is the space spanned by the history of publicly observable

variables in period t so that Ωp
t ⊆ Ωt(j) for all j. Projections onto Ωp

t are denoted Pp
t .

Definition 8. The subspace Ω⊥pt (j) is the orthogonal complement of Ωp
t in Ωt(j). Projections

onto Ω⊥pt (j) are denoted P⊥pt,j .

Proposition 4. The forward rate fn
t can be decomposed into the projection of r̃t+n onto

the public information set Ωp
t , the supply shocks and terms that are orthogonal to public

information.

Proof. Use that any projection onto Ωt(j) can be decomposed into a sum of the projection

onto Ωp
t and a projection onto the orthogonal complement Ω⊥pt (j) to rewrite the expression
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of the forward rate (3.21) as

fn
t = Pp

t r̃t+n +

∫
P⊥pt,j r̃t+n (3.22)

−
∫
Pp

t,j

(
r̃t+n −

n−1∏
s=0

∫
Pt+s,j r̃t+n

)

−
∫
P⊥pt,j

(
r̃t+n −

n−1∏
s=0

∫
Pt+s,j r̃t+n

)
+
(
vnt − vn+1

t

)
Since Ωp

t ⊆ Ωt+s(j) for all j and s = 0, 1, ...,m−1 and by Property 4 of orthogonal projections

(see Appendix A) we have that

Pp
t,j r̃t+n = Pp

t,j

n−1∏
s=0

∫
Pt+s,j r̃t+n (3.23)

for all all j and s = 0, 1, ...,m− 1. The term on the second line of (3.22) is thus identically

zero and the n period forward rate can thus be expressed as

fn
t = Pp

t r̃t+n +

∫
P⊥pt,j r̃t+n (3.24)

−
∫
P⊥pt,j

(
r̃t+n −

n−1∏
s=0

∫
Pt+s,j r̃t+n

)
+
(
vnt − vn+1

t

)
which concludes the proof. �

Proposition 4 demonstrates that the new term structure dynamics introduced by non-

nested information sets are orthogonal to public information which by definition is common

knowledge. This is intuitive, since all traders know that all traders know, and so on, that

all traders know that all traders observe a public signal and that the public signal therefore

cannot be used to predict the errors that other traders will make. The component of other
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traders’ projection errors that are predictable by an individual trader j must therefore be

orthogonal to public information.

Allen, Morris and Shin (2006) argues that with privately informed traders, asset prices may

display “drift”, i.e. slow adjustment to shocks and several small price changes in the same

direction. While this may be true if one condition on the value of the fundamental, the result

above suggests that there should be no discernable drift caused by private information that

can be identified simply by observing prices or other information that is publicly available

in real time. The empirical evidence summarized by Barberis, Shleifer and Vishny (1998)

that there is a predictable “momentum” component in some asset prices must therefore be

caused by something else than information based speculation among rational traders.

This ends the theoretical part of the paper. Before turning to the data, we can summarize

our findings so far. With non-nested information sets, individual traders can identify and

take advantage of predictable excess returns that would be absent in a model with only com-

mon information. We also demonstrated that the new dynamics introduced by speculative

behavior is orthogonal to public information. This has an interesting empirical implication:

Speculative dynamics cannot be detected using public data in real time. However, as econo-

metricians we can use public information from periods t+ s : s > 0 to extract an estimate of

the term due to the speculative dynamics in period t. To do so, we need to specify a process

for the short rate and traders’ information sets.

4. The Estimated Model

In the previous section it was demonstrated that non-nested information sets introduce new

dynamics to the term structure of interest rates. Here, we address the question whether these

dynamics can be quantitatively important. Above, bond prices were derived as functions of

higher order expectations of future short rates. In order to have an operational model that

can be estimated, we need to specify two more objects: A process for the short rate and the

information sets of the traders.
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4.1. The short rate. The short interest rate r̃t is the sum of three exogenous factors

r̃t = x1
t + x2

t + x3
t (4.1)

where the factors xt ≡
[
x1
t x2

t x3
t

]′
follow the vector autoregressive process

xt = Axt−1 + Cut : ut ∼ N(0, I3) (4.2)

The diagonal structure of A and the lower triangular structure of C

A =


ρ1 0 0

0 ρ2 0

0 0 ρ3

 , C =


c1 0 0

c21 c2 0

c31 c32 c3


are normalizations that do not restrict the dynamics of r̃t. The three factor structure is

motivated by two considerations. It gives a sufficiently high dimensional latent state to

make the filtering problem of traders interesting, while keeping the model computationally

tractable. In addition, using three factors implies that if traders were perfectly informed,

the model would simply be a three factor affine no-arbitrage model with a constant price of

risk.

4.2. Traders’ information sets. All traders observe a vector of public signals containing

the current short rate r̃t and bond yields collected in the vector yt. Non-nested information

sets are introduced through individual signals about the first two factors x1
t and x2

t . Each

signal is the sum of the true factor and an idiosyncratic noise component and the noise is

uncorrelated across signals and time. The vector of private signals zt(j) observed by trader
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j is thus given by

zt(j) =

 x1
t

x2
t

+Qζt(j) : ζt ∼ N (0, I2) (4.3)

Q =

 q1 0

0 q2

 (4.4)

Since the short rate is observed directly and is the sum of the three factors, it is without

loss of generality that traders observe private signals only about the first two factors. The

vector

St(j) =
[

z′t(j) r̃t y′t

]′
(4.5)

contains all the signals that trader j observes in period t. Trader j’s information set in period

t is thus given by

Ωt(j) = {St(j),Ωt−1(j)} (4.6)

implying that traders condition their expectations on the entire history of observed signals.

4.3. The solved model. When traders have non-nested information sets it becomes optimal

to form expectations about other traders’ expectations and natural representations of the

state in this class of models tend to be infinite.5 The model is solved using the method

proposed in Nimark (2010) which delivers a law of motion for the (finite dimensional) state

Xt of the form

Xt = MXt−1 +Net (4.7)

The state vector Xt contains stacked higher order expectations of the factors

Xt ≡
[

x
(0)′
t x

(1)′
t · · · x

(k)′
t

]′
(4.8)

5See Townsend (1983), Sargent (1991) and Makarov and Rytchkov (2012).
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where the higher order expectations of the vector of factors xt are defined recursively as

x
(k)
t ≡

∫
E
[
x

(k−1)
t | Ωt(j)

]
dj

starting from x
(0)
t = xt. The integer k is the maximum order of expectation considered and

can be chosen to achieve an arbitrarily close approximation in the limit as k →∞.

Common knowledge of the model is used to pin down the law of motion for Xt, that is,

to find M and N in (4.7). As usual in rational expectations models, first order expectations

x
(1)
t are optimal, i.e. model consistent estimates of the actual factors xt. The knowledge

that other traders have model consistent estimates allow traders to treat average first order

expectations as a stochastic process with known properties when they form second order

expectations. Common knowledge of the model thus implies that second order expectations

x
(2)
t are optimal estimates of x

(1)
t given the law of motion for x

(1)
t . Imposing this structure

on all orders of expectations allows us to find the law of motion for the complete hierarchy

of expectations as functions of the structural parameters of the model, i.e. the parameters

governing the short rate (4.1), traders’ information sets (4.6) and the parameter σv governing

the standard deviation of the bond supply shocks vt. The vector et contains the aggregate

shocks in the economy, i.e. the factor innovations ut and the bond supply shocks vt.

It is perhaps worth pointing out here that even though the state vector is high dimensional,

this by itself does not increase our degrees of freedom in terms of fitting bond yields. The

fact that the endogenous state variables x
(k)
t are rational expectations of the lower order

expectations in x
(k−1)
t disciplines the law of motion (4.7) and the matrices M and N are

completely pinned down by the parameters of the process governing the true exogenous

factors xt and how precise traders’ signals about xt are.
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For a given law of motion (4.7), bond prices can be derived using the average expectation

operator H : Rk → Rk that annihilates the lowest order expectation of a hierarchy so that
x

(1)
t

x
(2)
t

...

x
(k+1)
t


= H


x

(0)
t

x
(1)
t

...

x
(k)
t


(4.9)

and where x
(k)
t = 0 : k > k. Combing the operator H that moves expectations one step

up in orders of expectations and the matrix M from the law of motion (4.7) that moves

expectations one step forward in time allows us to compute the higher order expectation in

the bond pricing equation (2.13) as

n−1∏
s=0

∫
Pt+s,j r̃t+n =

[
11×3 0

]
(MH)n−1Xt (4.10)

so that bond prices are given by

b̃nt = −
n−1∑
s=0

[
11×3 0

]
(MH)s−1Xt + vnt (4.11)

The matrix M governs the actual dynamics of r̃t while bonds are priced as if Xt was

observed by all agents and followed a process governed by MH. The matrices M and MH

are thus analogous to the “physical” and “risk neutral” dynamics in a standard no-arbitrage

framework, though the interpretation is different.

Since log bond prices are a linear function of the state Xt plus the supply shocks vt we

can use the definition of bond yields ynt = −n−1b̃nt to also write the vector of bond yields yt

as linear function of the state and the supply shocks

yt = BXt + v̂t (4.12)
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where the element of the vector v̂t associated with the n period yield is given by n−1vnt . The

state equation (4.7) and the yield equation (4.12) constitutes a state space system that can

be used to let the observed history of bond yields inform us about the most likely values of

the parameters of the model. More details on how the model was solved can be found in the

Appendix.

4.4. Posterior Estimates. The solved model, i.e. the state space system (4.7) and (4.12),

is in a form that can be estimated directly by likelihood based methods. The supply shocks

vnt are assumed to be independent across maturities. However, since traders use information

in bond yields to form estimates of the state, a supply shock to a given maturity n in period

t will have a persistent effect on the entire term structure for several periods. The supply

shocks here are thus consistent with the evidence in Hamilton and Wu (2011). The standard

deviation of an n period bond supply shock vnt is specified as nσv. Restricting the standard

deviations of the supply shocks to be a linear function of maturity reduces the total number

of parameters to be estimated. In preliminary estimations this reduction in the number of

parameters came at virtually no cost in terms of fit. The presence of the supply shocks vt

thus add σv as a single new parameter to estimate along with the the parameters of the short

rate process (4.2) and the private signals of traders (4.3).
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Table 1

Posterior Parameter Estimates 1964:1-2007:12

θ Mode θ̂ Prior dist. Posterior 2.5%-97.5%

Short rate process

ρ1 0.990 U (0, 0.99) 0.989 - 0.990

ρ2 0.989 U (0, 0.99) 0.987 - 0.990

ρ3 0.696 U (0, 0.99) 0.655 -0.750

c1 11.2 U (0, 50) 7.42 - 26.8

c2 0.62 U (0, 50) 0.59 - 0.65

c3 0.48 U (0, 50) 0.45 - 0.51

c21 -11.9 U (−50, 50) (−27.4) - (−8.11)

c31 -0.49 U (−50, 50) (−0.54) - (−0.45)

c32 0.38 U (−50, 50) 0.34 - 0.43

Noise in private signals

q1 0.35 U (0, 50) 0.24 -1.14

q2 1.01 U (0, 50) 0.61- 1.34

Bond supply shocks

σv 0.21 U (0, 50) 0.20 - 0.21

Log likelihood at θ̂: -248.18

The vector of parameters to be estimated is denoted θ ≡ {A,C,Q, σv} and consists of a

total of 12 parameters. I use monthly data of the Federal Funds rate and the 3, 12, 24, 36,

48 and 60 month annualized interest rates on Treasuries taken from the CRSP data base.

These are the same maturities that the traders inside the model are assumed to observe.6

The sample period is from January 1964 to December 2007 (528 monthly observations) and

6The choice of number and maturities that are treated as observed by the traders in the model are of no
particular importance, as long as at least three different maturities more or less evenly spread out along the
yield curve are observed. This is due to the essential three-factor structure of the cross-section of yields.
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chosen to coincide with the sample period used by Cochrane and Piazzesi (2008) and Duffee

(2008). The time series are demeaned. The posterior parameter distributions was simulated

by 500 000 draws from an Adaptive Metropolis algorithm (see Haario, Saksman and Tam-

minen (2001)), initialized from a parameter vector found by maximizing the posterior using

the simulated annealing maximizer of Goffe (1996). There are some large discrete mean ad-

justments in the first 200 000 draws of the Markov chain, but visual inspection suggests that

both first and second moments have converged after 500 000 draws.7 The results based on

the last 250 000 draws are reported in Table 1. The posterior mode θ̂ is the parameter vector

from the simulated posterior Markov chain that achieves the highest posterior likelihood.

By themselves, the posterior estimates are not very interesting, but we can note that all

parameters appear to be well-identified. The first two factors are very persistent and traders

appear to have more precise private information about the first factor than about the second,

that is q1 < q2. The standard deviation σv of the supply shocks are similar to the estimated

standard deviation of measurement errors in latent factor models (e.g. Duffee 2008).

The fit of the model is good and compares favorably to a standard three factor affine

no-arbitrage model in terms of likelihood at the posterior mode. It is thus possible to

construct fully dynamic models with privately informed traders that are rich enough to be

taken seriously empirically. While this is reassuring, it is by itself not a strong endorsement

of the mechanism proposed in the model. In later sections other ways of validating the

reasonableness of the model will be discussed.

4.5. Historical speculation. The previous section showed that the speculative term intro-

duced to the term structure by non-nested information sets could be expressed as a higher

order prediction error that is orthogonal to public information. Nevertheless, we can quan-

tify this term using public price data since the period t higher order prediction error is only

orthogonal to public information known up to time t. As econometricians, we can use the

7More details, including the simulated posterior Markov chain and recursive plots of parameter standard
deviations, are available to download from the author’s web page.
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full sample and exploit information for t + s : s > 0 to back out information about the

higher order prediction error in period t. The Kalman simulation smoother can be used to

draw from p
(
XT | yT , θ

)
for a given parameter vector θ (e.g. Durbin and Koopman 2002).

The simulation smoother together with the posterior distribution of θ can thus be used to

construct the posterior distribution of the state p
(
XT | yT

)
. Once we have a posterior dis-

tribution of the state, it is straightforward to compute the distribution of the speculative

term (3.21) in the implied n period forward rate by using that

−
∫
Pt,j

(
r̃t+n −

n−1∏
s=1

∫
Pt+s,j r̃t+n

)
(4.13)

=
[

11×3 0
]

[(MH)n −MnH]Xt

where the equality follows from (4.10) and the fact that∫
Pt,j r̃t+n =

[
11×3 0

]
MnHXt (4.14)

= 11×3 × An

∫
Pt,jx

(0)
t dj (4.15)

Figure 2 displays the median and the 95% (point-wise) posterior probability intervals for the

speculative term in the one (n = 12) and five (n = 60) year forward rates.

The speculative term in the two maturities are strongly correlated and potentially quan-

titatively important at both short and long maturities. At their peaks, around 1981, the

median estimate is 3.5% and 2.5% for respectively, the 1 and 5 year forward rates. The 95%

probability interval reaches even higher, and is above 5% for the the speculative term in

the 1 year forward rate. One way to interpret these numbers is the following. If a “naive”

observer in 1981 took the implied forward rate as an indicator of market expectations about

the short rate in 1982, the magnitude of the mistake he would make by not controlling for

the speculative term would be 3.5%.
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Figure 2. Estimated speculative term (percentage points) in 12 and 60
month implied forward rate 1964:1 - 2007:12. Median (solid) and 95% proba-
bility interval (dotted).

Singleton (2006) points out that violations of the expectation hypothesis in US data are

most pronounced when the period 1979-1983 is included in sample, and the episode in the

early 1980’s is also the most eye-catching (and volatile) in Figure 2. The period 1979 - 1983

coincides with the so-called Volcker disinflation when the then Federal Reserve chairman Paul

Volcker raised interest rates sharply to bring inflation under control, causing a recession (see

for instance the account in Goodfriend and King 2005). Once inflation credibility had been

established, short interest rates began to fall, though long rates stayed high for some time.

Viewed through the lens of the model, this was an episode when first order expectations

of future short rates where significantly lower than higher order expectations. That is,

individual traders may have found it credible that Volcker would be able to keep future

short rates low before they believed that other traders had been convinced as well.



SPECULATIVE DYNAMICS IN THE TERM STRUCTURE 37

Alternative explanations of this episode emphasize that the early 1980s was a period when

traders demanded either more compensation to hold a given amount of risk because of the

recession, or when the amount of risk was perceived to be higher than usual because of more

volatile interest rates. Since the model presented here abstracts from these explanations it is

potentially misspecified and there is thus a risk that the importance of speculative dynamics

is overstated. Of course, models that abstract from speculative dynamics may overstate the

importance of other sources of variation in risk premia and it would be interesting to have

a model that nests these various mechanisms in order to quantify their relative contribution

to this episode, though this is beyond the scope of the present paper. While the different

types of models attach importance to the same episode in the early 1980s, they are not

observationally equivalent. The fact that speculative dynamics must be orthogonal to public

information in real time makes it econometrically distinct from other sources of time variation

in risk premia and should at least in principle allow us to identify it as separate from other

sources of variation in risk premia.

4.6. Quantifying the importance of speculative dynamics. We can also use the esti-

mated model to quantify the relative importance of speculation at different maturities. The

left panel of Figure 3 displays the median and the 95 per cent probability interval of the rel-

ative standard deviation of the speculative term and forward rates. At the one year horizon,

the relative standard deviation of the speculative term is around 15% at the median and

rises to approximately 30% at the peak at around a maturity of three years (n = 36). It is

also evident from the figure that the speculative term is not only quantitatively important,

but it is also statistically significant, with the 95% probability interval clearly bounded away

from zero. (The statistical significance of the speculative term is somewhat obscured by the

point-wise nature of the probability intervals in Figure 2.)

The right panel of Figure 3 displays the relative standard deviation of the speculative term

in yields, computed as the recursive average of the speculative term in forward rates. We
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Figure 3. Estimated relative standard deviation of speculative term in for-
ward rates (left panel) and yields (right panel). Median (solid) and 95% prob-
ability interval (dotted).

can see that the speculative term is quantitatively important also for yields, and more so at

long horizons, peaking at the four year maturity where it reaches 22.5 % at the median. The

fact that speculative dynamics appear to be more important for longer maturities may also

help explain the evidence in Gürkaynak, Sack and Swanson (2005) who argue that current

macro models of the term structure have trouble explaining the “excess” variability of long

bond yields. Embedding a non-nested information structure in a macro model may improve

these models’ ability to match the variance of long term yields.

4.7. The estimated dispersion of expectations. The dynamics of the model depend

importantly on that traders’ information sets are non-nested. As noted in the introduction,

one implication of non-nested information sets is that expectations will be dispersed. This

fact can be used as an independent check to gauge whether the estimated model requires

a reasonable degree of expectations dispersion to fit the data. Since no information about

expectation dispersion is used in the estimation process, this can be thought of as an informal

test of over-identifying restrictions.
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The standard deviation of individual traders expectations of the short rate n months ahead

is given by √
E

(
Pt,j r̃t+n −

∫
Pt,j′ r̃t+n

)2

(4.16)

The 95 per cent probability intervals for n = 12, 36 and 60 of the posterior distribution

of dispersion of first order expectations are reported in Table 2. The first row (n = 12)

is directly comparable to the survey evidence reported by Swanson (2006). The dispersion

implied by the estimated model is significantly smaller than that of the Blue Chip survey. The

spread between the 10th and the 90th percentile of a Gaussian distribution is approximately

2.6 standard deviations. The estimated spread is thus approximately 0.12 × 2.6 = 0.31 or

around 30 basis points at the median and around 40 basis points at the 97.5 percentile. The

estimated dispersion is thus smaller than even the lower end (80 basis point) of the spread

reported by Swanson. The model can thus not be considered to rely on an implausibly large

dispersion of expectations in order to generate a quantitatively significant speculative term.

This should increase our confidence in the model.

Table 2

Estimated dispersion of short rate expectations

√
E
(
Pt,j r̃t+n −

∫
Pt,j′ r̃t+n

)2

n 2.5% Median 97.5%

12 0.08 0.12 0.15

36 0.06 0.09 0.11

60 0.05 0.07 0.08

All numbers in percentage points (1 basis point = 0.01).

Table 2 also reports the dispersion of expectations at the three and five year forecast

horizon. The spread is slightly decreasing at longer horizons. Of course, at long enough
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horizons the dispersion will disappear as expectations of all agents will converge to the

unconditional mean of short rates.

4.8. Conditional Sharpe Ratios. Conditional Sharpe Ratios provide a measure of how

trading opportunities varies over time. Another way to judge the plausibility of the model is

thus to inspect the Sharpe Ratios implied by traders taking advantage of private information.

Since information sets are partly trader specific, conditional Sharpe Ratios will differ across

traders. Using the posterior distribution of the state p
(
XT | yT

)
we can back out a time

series of the conditional Sharpe Ratio associated with the median, or average, trader. The

Sharpe Ratio of an n periods to maturity bond from the perspective of the average trader is

then defined as

snt ≡

∫
Pt,j′ b̃

n−1
t+1 dj − b̃nt − r̃t + 1

2
var

(
b̃n−1
t+1 | Ωt(j)

)
√
var

(
b̃n−1
t+1 | Ωt(j)

) (4.17)

The numerator of the conditional Sharpe Ratio (4.17) is the average trader’s expected excess

return of holding an n period bond for one period. The denominator is the conditional

variance of excess returns which is common to all traders and do not vary over time. In

order to compute a historical estimate of the Sharpe Ratio snt we will use the approximation

that var
(
b̃n−1
t+1 | Ωt(j)

)
≈ var

(
b̃nt+1 | Ωt(j)

)
. This approximation is necessary since not

every maturity n is included in the estimated model.

The posterior median estimates of snt for n = 12 and n = 60 are plotted in Figure 4 together

with 95% (point wise) probability intervals. At the median, both Sharpe Ratios are quite

volatile and the Sharpe Ratio of the 12 month bond is more volatile than that of the 60 month

bond. At the median, the standard deviations are 1.51 and 1.24, respectively. Comparing

the time series of the Sharpe Ratios here with the graphs in Sangvinatsos and Wachter (2005)

suggest that the non-nested information model can generate as much variation in investment

opportunities as the essentially affine model of Sangvinatsos and Wachter.8 However, what is

8Sangvinatsos and Wachter (2005) do not report the standard deviation of the maximum Sharpe Ratios of
their model but a plotted time series.
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Figure 4. Posterior estimates of conditional Sharpe Ratios of the average
trader with 90% confidence intervals.

also clear from Figure 4 is that the probability intervals are very wide and for all maturities

and all periods always include the zero line. One interpretation of this result is that it may

be intrinsically difficult to get a precise estimate of excess returns due to private information

using only publicly available yield data, even when the entire sample is exploited. Another

possibility is that it is general property of term structure models that it is difficult to estimate

Sharpe Ratios at a given point in time precisely, though I am not aware of any other study

that reports probability intervals of conditional Sharpe Ratios.

4.9. Hidden factors and predictable excess returns. Duffee (2008) provide evidence of

a “hidden” factor that is insignificant in explaining the cross-section of yields but important

for predicting short rates and in extension, excess returns. Duffee estimates a 5 factor model
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Figure 5. Impulse responses to orthogonal factor innovations, dashed lines
are 5th and 95th percentile.

of the form

x†t = D†x†t−1 + Σ†εt (4.18)

yt = A+B†x†t + v†t (4.19)

on US bond data where x†t is a vector of factors and yt is a vector of bond yields. The esti-

mated model can be rotated to compute the implied principal components. Duffee finds that

while the first three principal components explain almost all of the unconditional variation

in yields, the fifth principal component is important for explaining expected future short

rates. He illustrates this by impulse response functions of the 5 factors and their effect on

the short rate. If a factor is unimportant for the cross section, but important for predicting

short rates (and in extension, excess returns) it will manifest itself as an impulse response

function of the short rate to the factor in question that originates at zero but then becomes

positive (or negative).
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We investigated whether the hidden factor found by Duffee is consistent with the model

presented here by generating artificial data sets using parameter draws from the estimated

posterior of our model with non-nested information sets. For each parameter draw, we

simulated 528 months of data and then estimated Duffee’s five factor model by maximum

likelihood and performed the required rotations to find the principal components. We then

computed impulse responses of short rates to orthogonal innovations to the factors. This

procedure was repeated 450 times. Figure 5 shows the median impulse response and the 5th

and 95th percentile.9 As we can see, the fourth and fifth principal components have little

effect on the short rate in the impact period, but becomes more important at longer time

horizons. This is exactly what we should expect from a model where the term structure does

not reveal all information about future short rates perfectly. If the state of the model would

be revealed perfectly by the cross section of yields, no additional factors beyond the three

(level, slope and curvature) that explains the cross sections would be useful to predict future

yields. However, if the state is not revealed by the cross section, then by construction there

must be additional factors that can help predict future yields.

5. Conclusions

Introducing private information in a model of bond pricing can give rise to speculative

behavior in the sense of Harrison and Kreps (1978). For traders in the model to engage in

speculative behavior it is sufficient that information sets are non-nested, or equivalently that

there is dispersion across traders’ forecasts of future short rates. Dispersed expectations are

also sufficient for traders to be able to predict excess returns and the model provides a novel

mechanism for time varying risk premia in the term structure of interest rates.

Theoretical models of private information in asset markets dates back at least to Gross-

man (1976). More recently, Allen, Morris and Shin (2006) presented a single risky asset,

9The percentile refer to the percentiles of the point estimates from Duffee’s model estimated on artificial
data and can thus not be given a probabilistic interpretation. A full Bayesian posterior simulation for each
draw of artificial data is too time consuming to be feasible.
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finite horizon model with an information structure similar to the one presented here. They

show that a concern among market participants about other market participants opinions as

described in Keynes’ (1936) “beauty contest” metaphor of the stock market, can be present

among fully rational traders if traders have access to private information. Here we have

demonstrated that even if the estimated amount of private information is small in the sense

that the dispersion of (first order) expectations across traders is low, speculative trade driven

by attempts to exploit perceived market mispricing of bonds can be quantitatively impor-

tant. We showed this by formulating an empirically plausible model of the term structure

that was estimated using likelihood based methods. The fit of the model is good, and it

is thus possible to construct dynamic models with privately informed agents that are rich

enough to take directly to the data. We also demonstrated how a historical time series of the

effect of speculative dynamics on implied forward rates can be estimated from public price

data, in spite of the fact that speculation according to the model is orthogonal to real time

public information.

The zero-coupon bonds traded in the present model have a known value at maturity. The

uncertainty about future bond prices arise solely from the uncertainty about the discount

rates that apply between the current period and the period when a bond matures. Arguably,

these discount rates should matter also for the pricing of other assets that will be traded

and pay dividends in the future. To the extent that there is additional uncertainty about

dividend payments and returns on other classes of assets, speculative dynamics may be even

more important in other markets than the bond market and thus worth investigating.

While the empirical results of the paper suggest that speculative dynamics can be quanti-

tatively important, it is worth also discussing two potential shortcomings of the model that

may lead us to overstate their role in explaining the observed history of bond yields.

First, recent studies have found that “unspanned” macro factors help predict excess re-

turns, e.g. Ludvigson and Ng (2009) and Joslin, Priebsch and Singleton (2010) while the

model here abstracts from public information not spanned by bond prices. Potentially, this
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could have implications for the estimated importance speculative dynamics. One possibility

is that there are publicly observed unspanned factors that have exactly offsetting effects on

short rate expectations and risk premia (as in the model of Joslin et al 2010). These factors

would then appear not to be priced, i.e. these factors would not be spanned by current bond

prices, but could still help predict future excess returns. The public information set of the

model presented here would then be too small and the importance of speculative dynamics

could be overstated. However, there is another interpretation of the results of Ludvigsson

and Ng (2009) and Joslin et al (2010) that is more favorable to our model. In both studies

cited above, the macro information is dated according to the calender time of the quan-

tity that it measures. As an example, the Consumer Price Index (CPI) for say January

is dated as January in the bond pricing model and not dated as February, when the data

is actually made public. In a perfect information setting like Joslin et al ’s this distinction

is unimportant as traders are assumed to observe the true state of the world at all times.

However, in imperfect information models this distinction becomes important. To see why,

note that a natural explanation why the predictive content of January CPI may appear not

to be spanned by bond prices in January is that it is not observed until February. If interest

rates moves at the time of the data release (i.e. in February), this will create the impres-

sion that January CPI in the bond price model helps predict excess returns. The fact that

bond prices respond at the time of the many macro economic data releases (see for instance

Faust, Rogers, Wang and Wright 2007) lends support to the latter interpretation. Whether

there is relevant public information that is unspanned by bond prices but captured by macro

economic data that is available in real time is thus arguably still an open question.

Second, the model presented here abstracts from variation in risk premia not caused by

speculative dynamics. We found that conditional on the model presented here, speculative

dynamics were found to be quantitatively important. But in order to quantify the relative

importance of speculative dynamics and other sources of risk premia we would ideally like

to have a model that also incorporates preference based or conditional heteroscedasticity



46 KRISTOFFER P. NIMARK

based variation in risk premia. While constructing such a model is beyond the scope of the

present paper, the theoretical results presented here suggest that at least in principle, the

fact that speculative dynamics must be orthogonal to public information in real time should

allow us to identify speculation from other sources of time varying risk premia. The relative

importance of time varying risk premia and speculative dynamics could then be addressed

more directly.
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Appendix A. Some useful properties of projections

This Appendix reproduces some results and properties of orthogonal projections on inner-

product spaces that are used in Section 3 of the main text above. Proofs and more details

can be found in for instance Brockwell and Davis (2006).

Definition 1. (The inner-product space L2.) The inner product space L2 is the collection

C of all random variables X with finite variance

EX2 <∞ (A.1)

and with inner-product

〈X, Y 〉 ≡ E (XY ) : X, Y ∈ L2 (A.2)

Definition 2. Let Ω be a subspace of L2. An orthogonal projection of X on Ω , denoted

PΩX, is the unique element in L2 satisfying

〈X − PΩX,ω〉 = 0 (A.3)
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for any ω ∈ Ω.

Orthogonal projections have the following useful properties:

(1) The projection PΩX coincides with the conditional expectation E [X | Ω] in linear

models with Gaussian shocks.

(2) Let Ω′ be a subspace of Ω and Ω′⊥ its orthogonal complement in Ω. Then each ω ∈ Ω

has a representation as a sum of an element in Ω′ and an element of Ω′⊥, i.e.

ω = PΩ′ω + PΩ′⊥ω (A.4)

(3) X ∈ Ω⊥ if and only if PΩX = 0, where Ω⊥ is the orthogonal complement to Ω.

(4) Ω1 ⊆ Ω2 if and only if PΩ1X = PΩ1PΩ2X for all X ∈ L2.

Property (1) is obviously useful as it allows us to use property (2) - (4) to analyze traders’s

expectations in a model with linear constraints and Gaussian shocks. Property (2) was used

in the proof of Proposition 4 where we decompose bond prices into a component that is

the projection of future short rates on public information and into a component that is

orthogonal to public information. Property (3) is used to show that individuals can predict

average expectations errors when information sets are non-nested. Property (4) is used to

show both that in the absence of supply shocks the expectations hypothesis holds in our

model with respect to a public information set and that individual traders can predict other

traders’ prediction errors as well as excess returns when information sets are non-nested.

Appendix B. Solving the model

Solving the model implies substituting out the higher order expectations from the bond

pricing equation (2.13). We are looking for a solution of the form

Xt = MXt−1 +Net (B.1)

yt = BXt + v̂t (B.2)
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where

Xt ≡


x

(0)
t

x
(1)
t

...

x
(k)
t


, et =

 ut

v̂t



That is, to solve the model, we need to find the matrices M,N and B as functions of the

parameters governing the short rate process, the stochastic supply shocks and the idiosyn-

cratic noise shocks. The integer k is the maximum order of expectation considered and can

be chosen to achieve an arbitrarily close approximation to the limit as k →∞. Here, a brief

overview of the method is given, but the reader is referred to Nimark (2010) for more details

on the solution method.

First, common knowledge of the model can be used to pin down the law of motion for the

vector Xt containing the hierarchy of higher order expectations of xt. Rational, i.e. model

consistent, expectations of xt thus implies a law of motion for average expectations x
(1)
t

which can then be treated as a new stochastic process. Knowledge that other traders are

rational, means that second order expectations x
(2)
t are determined by the average across

traders of the rational expectations of the stochastic process x
(1)
t . Third order expectations

x
(3)
t are then the average of the rational expectation of the process x

(2)
t , and so on. Imposing

this structure on all orders of expectations allows us to find the matrices M and N . Section

B.2 below describes how this is implemented in practice.

Second, the method exploits that the importance of higher order expectations are decreas-

ing with the order of expectation. This has two components:

(i) The variance of higher order expectations of the factors xt are bounded by the variance

of the true process, or more generally, the variance of k + 1 order expectation cannot be

larger than the variance of a k order expectation

E
[
x

(k+1)
t x

′(k+1)
t

]
≤ E

[
x

(k)
t x

′(k)
t

]
(B.3)
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To see why, note that by the identity

x
(k)
t ≡ x

(k+1)
t + ε

(k+1)
t (B.4)

and the fact that since x
(k+1)
t is the average of an optimal estimate of x

(k)
t the k = 1 order

error ε
(k+1)
t must be orthogonal to x

(k+1)
t we have that

E
[
x

(k)
t x

′(k)
t

]
= E

[
x

(k+1)
t x

′(k+1)
t

]
+ E

[
ε

(k+1)
t ε

′(k+1)
t

]
. (B.5)

Since E
[
ε

(k+1)
t ε

′(k+1)
t

]
is a covariance

E
[
ε

(k+1)
t ε

′(k+1)
t

]
≥ 0 (B.6)

and the inequality (B.3) then follows immediately. (This is an abbreviated version of a more

formal proof available in Nimark (2010).)

That the variances of higher order expectations of the factors are bounded is not suffi-

cient for an accurate finite dimensional solution. We also need (ii) that the impact of the

expectations of the factors on bond yields are decreasing “fast enough” with the order of ex-

pectation. To understand why this is the case, it helps to first note that the full information

rational expectation equilibrium is a special case of the solution (B.1) - (B.2) where

x
(k)
t = x

(k+1)
t ∀t, k (B.7)

That is, under full information, all orders of expectations of the factors coincide with the

true factors at all times. Define the full information solution, i.e. bond yields as a function

of the true state x
(0)
t as

yt = B̃x
(0)
t + v̂t (B.8)

where the rows of the matrix B̃ can be found by stacking the matrices 1
n

∑n−1
s=0

[
11×3 0

]
As−1

for the appropriate choices of n. By chance, for some t, all orders of expectations can coincide

also in the non-nested information case. Yields in the non-nested information model should
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then be the same as the yields in the full information model: If everybody believes that

everybody agrees about what the current “true” state x
(0)
t is, they must also agree about

their expectations about future short rates. For this to then result in the same yields as a

function of the state as the full information solution, the sub-matrices of B must sum to B̃

since

B̃x
(0)
t = BXt

=
[
B0 B1 · · · Bk

]


x
(0)
t

x
(0)
t

...

x
(0)
t


(B.9)

=
∞∑
0

Bjx
(0)
t (B.10)

if x
(0)
t = x

(k)
t ∀k and where the Bjs are the sub matrices of B in the non-nested information

solution (B.2). Since B̃ is finite, the sequence B0, B1, ..., Bk, ... must be a convergent series,

which implies that limk→∞Bk = 0.

Summing up, we can use common knowledge of the model to derive a law of motion for

the hierarchy of expectations of the factors xt. We can then find an approximate solution

for bond yields of the form

yt =
[
B0 B1 · · · Bk

]


x
(0)
t

x
(1)
t

...

x
(k)
t


+Qet (B.11)

where the coefficients Bk that tend to zero as k →∞, are multiplied with a k order expec-

tation, where the variance of the expectations are bounded from above by the variance of
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the true state x
(0)
t . The accuracy of the solution for the k chosen in the estimated model is

discussed below in section B.4.

B.1. Bond yields as a function of the state. For a given law of motion (4.7), bond

prices can be derived using the average expectation operator H : Rk → Rk that annihilates

the lowest order expectation of a hierarchy so that
x

(1)
t

x
(2)
t

...

x
(k+1)
t


= H


x

(0)
t

x
(1)
t

...

x
(k)
t


(B.12)

and where x
(k)
t = 0 : k > k. The matrix H is then given by

H =

 03k×3

Ik−3

03×(k−3)

 (B.13)

Combing the operator H that moves expectations one step up in orders of expectations and

the matrix M from the law of motion (4.7) that moves expectations one step forward in time

allows us to compute the higher order expectation in the bond pricing equation (2.13) as

b̃nt = −
n−1∑
s=0

[
11×3 0

]
(MH)s−1Xt + ṽnt (B.14)

where ṽnt ≡ nvnt . The yield on a bond with n periods to maturity is then given by

ynt =
1

n

n−1∑
s=0

[
11×3 0

]
(MH)s−1Xt + vnt (B.15)

By stacking the yield formula (B.1) for appropriate maturities n gives the matrix B in (B.2).

B.2. The law of motion of higher order expectations of the factors. To find the

law of motion for the hierarchy of expectations Xt we use the following strategy. For a given

M,N and B in (B.1) - (B.2) we will derive the law of motion for trader j’s expectations of
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Xt , denoted Xt|t(j) ≡ E [Xt | Ωt(j)] . First, write the vector of signals St(j) as a function of

the state, the aggregate shocks and the idiosyncratic shocks

St(j) =
[

z′t(j) r̃t y′t

]′
(B.16)

= DXt +R


ζt(j)

ut

v̂t

 (B.17)

where the matrix D is given by the definitions (4.1), (4.3) and (4.12)

D =


I2 0

11×3 0

B

 (B.18)

and R can be partitioned conformably to the idiosyncratic and aggregate shocks

R =
[
Rj RA

]
.

Agent j’s updating equation of the state Xt|t(j) estimate will then follow

Xt|t(j) = MXt|t−1(j) +K
(
St(j)−DMXt|t−1(j)

)
(B.19)

Rewriting the observables vector St(j) as a function of the lagged state and taking averages

across traders using that
∫
ζt(j)dj = 0 yields

Xt|t = MXt|t−1 +K
(
DMXt−1 + (DN +RA) et +−DMXt|t−1(j)

)
(B.20)

= (M −KDM)Xt|t−1 +KDMXt−1 +K (DN +RA) et (B.21)
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Appending the average updating equation to the exogenous state gives us the conjectured

form of the law of motion of x
(0:k)
t xt

Xt|t

 = M

 xt−1

Xt−1|t−1

+Net

where M and N are given by

M =

A 0

0 0

+

03×3 0

0 [M −KDM ]−

+

 0

[KDM ]−

 (B.22)

N =

C 0

0 0

+

 0

[K (DN +RA)]−

 (B.23)

where [·]− indicates that the a last row or column has been canceled to make a the matrix

[·] conformable, i.e. implementing that x
(k)
t = 0 : k > k . The Kalman gain K in (B.19) is

given by

K = (PD′ +NR′) (DPD′ +RR′)−1 (B.24)

P = M
(
P − (PD′ +NR′) (DPD′ +RR′)−1 (PD′ +NR′)

′)
M ′ +NN ′ (B.25)

The model is solved by finding a fixed point that satisfies (B.2), (B.22), (B.23), (B.24) and

(B.25).

B.3. Numerical issues. It is well-known that due to finite machine precision, the Kalman

filter may be unstable in applications where some state variables (or some linear combination

of state variables) are estimated very precisely compared to others, see Simon (2006). This

manifests itself as a Kalman filter covariance matrix P that is numerically not symmetric

and/or positive semi-definite. In our model, there are three latent factors, but a linear

combination of them (i.e. the short rate r̃t) is observed perfectly and solving the model

as above may (and for some parameterizations, do) give rise to numerical inaccuracies. To
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avoid this problem, we can rewrite the short rate process as

r̃t = x1
t + x2

t + x3
t (B.26)

= x1
t + x2

t + ρ3

(
r̃t−1 − x1

t−1 − x2
t−1

)
+
[
c31 c32 c3

]
ut (B.27)

We can still solve the model as above if we redefine the state as

X̂t =


x̂

(0)
t

x̂
(1)
t

...

x̂
(k)
t


, x̂

(0)
t ≡

 x1
t

x2
t



to get a system of similar form as in Section B.2 above

X̂t = M̂X̂t−1 +Net (B.28)

yt = B̂X̂t +Ret +Brr̃t (B.29)

but where yields now also depend on the current short rate directly. We also need to adjust

the measurement equation for trader j to be

St(j) = D1X̂t +D2X̂t−1 +Drr̃t−1 + R̂


ζt(j)

ut

v̂t

 (B.30)

where

R̂ =
[
Rj RA

]
+


0[

0 c31 c32 c3 0
]

0

 (B.31)

The updating equation of trader j′s state estimate is now given by

X̂t|t(j) = M̂X̂t|t−1(j) + K̂
[
St(j)−D1M̂X̂t−1|t−1(j)−D2X̂t−1|t−1(j)−Drr̃t−1

]
(B.32)
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Since the additional term D2X̂t−1 in trader j’s measurement equation is a function of the

lagged state X̂t−1, the innovation representation is non-standard. The Kalman gain K̂ in

(B.32) is the steady state (t→∞) Kalman gain of the modified Kalman filter

K̂ = P+1D
′
1 (B.33)

×
[(
D1M̂ +D2

)
P
(
D1M̂ +D2

)′
+
(
D1Ĉ + R̂

)(
D1Ĉ + R̂

)′]−1

P = P+1 (B.34)

−K̂
[(
D1M̂ +D2

)
P
(
D1M̂ +D2

)′
+
(
D1Ĉ + R̂

)(
D1Ĉ + R̂

)′]
K̂ ′

P+1 = M̂PM̂ + ĈĈ ′ (B.35)

For a derivation of the modified filter, see Nimark (2009).

M̂ and N̂ are found in the same way as in (B.22), (B.23), i.e. by taking averages of the

update equation (B.32) and amending it to the “new” true factor process x1
t

x2
t

 = Â

 x1
t−1

x2
t−1

+ Ĉut (B.36)

=

 ρ1 0

0 ρ2

 x1
t−1

x2
t−1

+

 c1 0 0

c21 c2 0

ut (B.37)

The resulting system is algebraically equivalent to the system in B.2, but does not suffer

from numerical instability.

B.4. The accuracy of the solution. While it can be shown that the impact coefficients

of higher order expectations on yields are a convergent sum, exactly how many orders of

expectations that are needed for an accurate solution in a given application depends on the

parameters of the model. In the model estimated in Section 4 k = 25. Figure 8 displays

the posterior distribution of the loadings onto the different orders of expectations of the

factors for the 12, 36 and 60 month yields, that is, the posterior distributions of the odd (left
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column) and even (right column) numbered elements of the rows of the relevant rows of B

in (4.12). As we can see, the loadings approaches zero quite quickly and the loadings onto

the factors for the 12 month yield are approximately zero for k > 12. For longer maturities

(36 and 60 months shown), the loadings are practically zero for k > 15. Choosing k = 25

thus seems more than sufficient.

Code and data used to estimate the model and generate figures are available at the author’s

web page.
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Figure 6. Estimated posterior (higher order) factor loadings, median (solid)
and 95% probability interval (dotted). First column contains loadings onto
the (higher order expectations of the) first factor x1

t , with order of expectation
k on the x-axis for yields of 1, 3 and 5 years to maturity. Second column
contains the same information regarding the second factor x1

t


