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1 Introduction

The forecasting literature has identified two important, broad issues (see e.g. Stock and Wat-
son, 1996, 2003, for a discussion). The first stylized fact is that there are several predictors
of output growth and inflation that have substantial and statistically significant predictive
content, although that is apparent only sporadically, at some times and in some countries.
Whether this predictive content can be reliably exploited is unclear. In fact, finding predic-
tors that work well in one period is no guarantee that such predictors will maintain their
usefulness in subsequent periods. That is, the predictive content is unstable over
time. This lack of stability is mainly established using parameter instability tests (such as
Andrews’ (1993) QLR test) in Granger-causality regressions as well as by evaluating out-of-
sample forecasts over two sub-samples and noting that the good (poor) forecasting ability of
a predictor in one sub-sample seems totally uncorrelated with whether the same predictor
will have a good (poor) forecasting ability in the other sub-sample.

A second important finding concerns the relationship between in-sample fit and out-of-
sample forecasting ability. Researchers typically identify predictors on the basis of in-sample
Granger-causality tests. In-sample Granger-causality tests assess the significance of the
proposed predictors in a regression of the dependent variable (say y;i;) onto the lagged
predictors (say, x;), where h is the forecast horizon. That is, the Granger-causality test is a

simple F-test on the parameter vector 3,, where:
Yern = BLae + Yz +ean, t=1,....T (1)

and z; are other control variables (for example, lags of y: y; 41, ...). Given that time series
are typically serially correlated and possibly heteroskedastic and the data are overlapping,
the error term might be both serially correlated and heteroskedastic, and the F-test requires
HAC-robust variance estimates (Newey and West, 1987). The researcher deems regressors to
be suitable predictors when the statistical tests reject the null hypothesis that the regressor
is insignificant (that is, when the F-test for testing the hypothesis 3, = 0 rejects at standard
significance levels). However, empirical results in the literature find that significant Granger-
causality statistics contain little or no information about whether the predictor is reliable
out-of-sample. Indeed, in-sample predictive content does not necessarily translate
into out-of-sample predictive ability, nor ensures the stability of the predictive
relation over time. This is a well-known, although disconcerting, empirical stylized fact;
one of the earliest examples dates back to Meese and Rogoff (1983a,b, 1988), who found



that successful in-sample fit of exchange rate models does not always translate into out-of-
sample predictive ability — see also Swanson and White (1995), who similarly found in-sample
predictive ability in the term structure of interest rates but no out-of-sample forecasting
ability, and Stock and Watson (2003), who found similar results for a much broader set of
macroeconomic time series.

Why do instabilities matter for forecasting? Clearly, if the predictive content is not
stable over time, it will be very difficult to exploit it to improve forecasts. In addition, if
the regressors are selected according to in-sample Granger-causality tests, and the latter are
not indicative of true out-of-sample predictive power, this practice may result in even poorer
forecasts. In fact, the empirical evidence that we discuss has documented large swings in
parameter magnitudes and signs, which can potentially affect forecasts in practice.

In a comprehensive analysis, Stock and Watson (2003) focus attention on forecasting
output growth (measured by the rate of growth of Gross Domestic Product, GDP) and
inflation (measured by the percentage change of the consumer price index or the implicit GDP
deflator) in U.S. data, and consider a multitude of predictors one-at-a-time, in particular
asset prices such as interest rates, term spreads, default spreads, stock prices, dividend
yields, as well as non-financial indicators such as unemployment, money growth and the
output gap, and find that the two issues above are widespread in their database up to the
early 2000’s. Is it the case also when considering the last decade of data? And do these results
hold in other databases? In what follows, we review the empirical evidence on forecasting
in the presence of instabilities, and show that the same two findings emerge in the recent
literature as well as in other databases: there is clear empirical evidence of instabilities in
the predictive relationships as well as poor correlation between in-sample and out-of-sample
predictive content.

The objective of this chapter is to understand what we have learned about forecasting
in the presence of instabilities, especially regarding the two questions above. The empirical
evidence raises a multitude of questions. If in-sample tests provide poor guidance to out-of-
sample forecasting ability, what should researchers do? If there are statistically significant
instabilities in the Granger-causality relationships, how do researchers establish whether
there is any Granger-causality at all? If there is substantial instability in predictive rela-
tionships, how do researchers establish which models is the "best" forecasting model? And
finally, if a model forecasts poorly, why is that and how should researchers proceed to im-
prove the forecasting models? In this chapter, we answer these questions by discussing

various methodologies for inference as well as estimation that have been recently proposed



in the literature. The last question is the hardest one, as improving models’ forecasts has
been proven to be difficult empirically, although the literature does provide partial answers,
which we overview.

This chapter is divided in three parts. Section 2 analyzes whether predictive content
is unstable over time and, if that is the case, the tools that researchers can use to assess
predictive ability or improve models’ estimation in the presence of instabilities. Section 3
focuses on the relationship between in-sample fit and out-of-sample forecasting ability; in
particular, it provides theoretical results on why the two may differ, and reviews statistical
tests to assess whether that is the case in practice, and what are the causes of the divergence.
Section 4 provides an empirical analysis of whether these issues are important in practice
by focusing on an empirical analysis. We focus on the same database as Stock and Watson
(2003) and test whether the predictive content is unstable, which estimation methods are
most successful in practice, and whether the in-sample fit is indicative of out-of-sample
forecasting performance, and what are the likely reasons of the discrepancy.

Throughout the chapter we focus on conditional mean forecasts in linear models, given
their importance in practice.! This allows us to clearly expose the main concepts with
simple notation, while at the same time be consistent with the empirical application in
Section 4. When results are applicable to more general models, we note so and refer readers
to the relevant references. Finally, note that the chapter focuses on recent contributions on
forecast evaluation and estimation in the presence of instabilities (including several of the
author’s own and related works). The chapter does not cover in-sample instability tests nor
on in-sample estimation of models with breaks (unless the estimation is explicitly shown
to improve models’ out-of-sample forecasting ability)?. Finally, the discussion focuses on
frequentist methods; Bayesian techniques for handling model instability receive mention but

a less detailed attention.

'For a review of forecasting in non-linear models see Terasvirta (2009) and Calhoun and Elliott (2012)
for an analysis of the relative advantages of linear versus non-linear models; for a review of forecasting with

trending data, see Elliott (2009); and for a review of volatility forecasting see Andersen et al. (2009).
2For a review of tests of structural breaks, see Stock (1994).
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2 Is the Predictive Content Unstable Over Time?

The goal of this section is to determine whether the predictive content in typical economic
relationships is unstable over time. In particular, which tools are available to researchers for
assessing whether that is the case, and which models they should use for forecasting. First,
we review the empirical evidence on instabilities in predictive regressions and databases of
interest to economists. The literature suggests that the predictive content of several time
series predictors is indeed unstable over time in macroeconomics, finance and international
finance. Second, given the empirical findings, we then review the tools that researchers have
at their disposal for evaluating forecasting ability in the presence of instabilities. Typically,
researchers are interested in the following questions: (i) does a vector of time series Granger-
cause a variable of interest (e.g. inflation or output growth)? (ii) which, among two models,
forecasts the best? (iii) are forecasts rational? Typical Granger-causality tests as well as
tests for out-of-sample forecast comparisons and tests for forecast rationality are inconsistent
in the presence of instabilities. The chapter provides guidance on which tools are available
to researchers who are interested in answering these questions when there are instabilities in
the data. Third, is it possible to exploit instabilities to improve the out-of-sample forecasting
ability of existing models? There are several approaches taken in the literature, from methods
that identify historic breaks and impose them in the estimation to the estimation of time-
varying parameter models. The chapter provides guidance to practitioners by focusing on
methods that have been developed with the clear aim of improving forecasting ability and
have been empirically successful.® In Section 4, we select several of these methodologies and
evaluate their usefulness for forecasting inflation and output growth using a large database

of macroeconomic predictors in an empirical exercise similar to Stock and Watson (2003).

2.1 Is the Predictive Content Unstable Over Time? The Empiri-

cal Evidence

The literature in the last decade has shown that Stock and Watson’s (2003) empirical stylized
facts have been echoed in several other databases. For example, in finance, instabilities have
been found when forecasting stock returns. Goyal and Welch (2003) is one of the early studies
that reports instabilities in stock return predictability, whereas Ang and Bekaert (2004) find

3Due to space limitations, we will not overview the literature that focuses strictly on in-sample tests for

structural breaks or in-sample estimation in the presence of structural changes.



a deterioration in stock return predictability in the 1990s. Rapach and Wohar (2005) find
several breaks in both real interest rates as well as inflation for 13 industrialized countries.
Rapach and Wohar (2006) document the existence of structural breaks in the predictive
ability of several variables (such as the dividend price ratio and the default spread) and
S&P 500; the results are similar when predicting CRSP equal-weighted real stock returns.
Similarly, Paye and Timmermann (2006) find structural breaks in predicting stock returns
using the lagged dividend yield, short term interest rates and the term spread, among other
predictors. Interestingly, they note that the timing of the break is not uniform over time:
several countries experience breaks at different times. They also find that, in the majority
of the cases, the predictable component in stock returns has diminished following the most
recent break. Timmermann (2008) concludes that "most of the time the forecasting models
perform rather poorly, but there is evidence of relatively short-lived periods with modest
return predictability. The short duration of the episodes where return predictability appears
to be present and the relatively weak degree of predictability even during such periods makes
predicting returns an extraordinarily challenging task." See also the chapter by Rapach and
Zhou in this Handbook. Another area in finance where instabilities seem very important
is firm and industry-level CAPM betas, see Blume (1975) and Fama and French (1997) for
classic references.*

A second area of research where instabilities in forecasting performance are important is
exchange rate prediction. Schinasi and Swamy (1989) and Wolff (1987) are among the first
papers that found instabilities in exchange rate models and their forecasting ability. Rossi
(2006) considers traditional models of exchange rate dynamics based on macroeconomic fun-
damentals, such as interest rates, money or output differentials using the Granger-causality
tests robust to the presence of parameter instability discussed later in this Section. She shows
that for some countries it is possible to reject the hypothesis that exchange rates are random
walks in favor of the existence of a time-varying relationship between exchange rate and fun-
damentals. Her findings raise the possibility that economic models were previously rejected
in favor of an a-theoretical random walk model not because the fundamentals are completely
unrelated to exchange rate fluctuations, but because the relationship is unstable over time
and, thus, difficult to capture by Granger-causality tests or by forecast comparisons. She
also analyzes forecasts that exploit time variation in the parameters and finds that, in some

cases, they can improve economic models’ forecasts relative to the random walk. Rogoff

4 As a referee points out, in fact instabilities are so important that it is common practice to limit monthly

CAPM regressions to 3-5 years of historical data.



and Stavrakeva (2008) point out that the predictive ability of macroeconomic fundamentals
strongly depends on the sample split chosen for forecasting, also suggesting that instabilities
are very important. Giacomini and Rossi (2010a) document that the relative forecasting
performance of the models is time-varying: economic fundamentals do have forecasting abil-
ity in the late Eighties, but the predictive ability disappears in the Nineties. Beckmann et
al. (2011) consider instabilities in the relationship between the Deutschmark/U.S. dollar ex-
change rate and macroeconomic fundamentals using a time-varying coefficient model. They
show that fundamentals are important explanatory variables for exchange rates, although
their impact greatly differs over time. Sarno and Valente (2009) consider forecasting five
major U.S. dollar exchange rates using a time-varying coefficient model. They conclude that
the poor out-of-sample forecasting ability of exchange rate models may be caused by the
poor performance of in-sample model selection criteria, and that the difficulty in selecting
the best predictive model is largely due to frequent shifts in the fundamentals. Bacchetta
and van Wincoop (2009) and Rime et al. (2010) provide theoretical explanations for the
instabilities found in the relationship between exchange rates and macroeconomic fundamen-
tals: the former rely on unstable expectations, and the latter on learning about the state of
the economy.

A third area where researchers have found evidence of instability is macroeconomic vari-
ables’ predictions, for example forecasting output growth using the term spread. Giacomini
and Rossi (2006) consider the relationship between the lagged term spread and output growth
and find empirical evidence of the existence of a relationship between the term spread and
output growth, although it is unstable over time. Bordo and Haubrich (2008) show that the
spread between corporate bonds and commercial paper predicts future output growth over
the period 1875-1997 although the predictive ability varies over time, and has been strongest
in the post-World War II period. Schrimpf and Wang (2010) examine the predictive ability of
the yield curve in four major developed countries (Canada, Germany, the United Kingdom,
and the United States). They find strong evidence of instabilities in the relationship between
the yield spread and output growth by using structural break tests; they also find that the
yield curve has been losing its edge as a predictor of output growth in recent years. See also
Wheelock and Wohar (2009) for an overview of the usefulness of the spread for predicting
economic activity across countries and over time. More broadly, Stock and Watson (2007),
D’Agostino, Giannone and Surico (2008) and Rossi and Sekhposyan (2010) have documented
a change in the forecastability of inflation as well as output growth over time; in particular,

a decrease in predictability. The same decrease in predictive ability is apparent also when



comparing the forecasting performance of structural models, as Edge and Gurkaynak (2011)

demonstrate.

2.2 Testing When the Predictive Content Is Unstable Over Time

As discussed in the introduction, forecasters are interested in several questions, among which:
(i) does a potential predictor Granger-cause an economic variable of interest? (ii) which one
between two competing models forecasts the best? (iii) are forecasts rational (or optimal)?
In this section, we review techniques that allow forecasters to answer these questions in

unstable environments.

2.2.1 How Can Researchers Establish Granger-causality in the Presence of In-

stabilities?

In the presence of instabilities, traditional Granger-causality tests are inconsistent: in fact,
Rossi (2005) showed that traditional Granger-causality tests may have no power in the
presence of instabilities. To understand why, consider the following example, which is a
special case of eq. (1). The data are generated by: y,ip, = 5,24 + €pap, t = 1,2,..., T,
where, for simplicity, x; and ¢,,, are both univariate random draws from i.i.d. standard
Normal distributions, and they are independent of each other. We assume that the prediction
horizon, h, is fixed. The parameter changes over time, and this is formalized by allowing

the parameter to have a time-subscript: 3,. Let
B, =1t <T/2)—1(t >T/2). (2)

A traditional Granger-causality test in this example would be a t-test for testing the null
hypothesis that the Ordinary Least Squares (OLS) parameter estimate in a regression of

Yern, onto x; equals zero. In this example, the full-sample OLS parameter estimate is:

T -1 7 T -1 7 ,
Zast) thst+h+(2xt) S 228,
t=1

t=1

T, -1 p
<th> D TYn =

t=1 t=1

T -1 T
= (Tl Z x?) Til Z TtEtah
t=1
+

-1 T/2 T
(rixzat) e ¥ |0
t=1 t=1 t=T/2+1 p




since 77! il‘? — E(z?) =1 and T} ZT: zn, — 0. Thus, instabilities are such that
the estinrlaft:e1 of tﬁe Granger-causality pagrlneter is flegligible, leading to a failure to reject
the no Granger-causality hypothesis® even if the regressor does Granger-cause v, in reality.
The problem is that the predictive ability is unstable over time, which does not satisfy the
stationarity assumption underlying traditional Granger-causality tests. While this example
is extremely simplified, it can be generalized to instabilities other than eq. (2); by varying
the time of the break and the magnitude of the parameters before and after the break it is
possible to find similar results. The main conclusion is that traditional Granger-causality
tests are inconsistent if there are instabilities in the parameters. Note that this problem
is empirically relevant: quite often, parameter estimates change substantially in sign and
magnitude through time. See for example Goyal and Welch (2008) for suggestive plots of
time variation in sum of squared residuals of equity premium returns predictors, or the
dramatic swings over time in the sign of the coefficients in exchange rate models (Rossi,
2005).°

What should researchers do in such situations? Rossi (2005) proposes tests for evaluating
whether the variable z; has no predictive content for y; in the situation where the parameter
[, might be time-varying.” Her procedure is based on testing jointly the significance of
the predictors and their stability over time. Among the various forms of instabilities that
she considers, we focus on the case in which 3, may shift from 3, to 8, # [, at some
unknown point in time, 7. That is, 8, = 8; - 1 (¢t < 7) + B, - 1(t > 7).® Note that, although
the parameter may have parameter instability, the null hypothesis is not just parameter

stability: the main objective of the test is to capture predictive ability, even though the

Recall that the null hypothesis of a Granger-causality test is the absence of predictive ability.
6Note also that even if there are no dramatic swings in the coefficient signs but swings in the coefficient

magnitudes, and the traditional test is consistent, yet the finite sample power of the traditional test is likely

to be inferior to that of a test that is robust to instabilities, such as the one we discuss below.
"Rossi (2005) relaxes these conditions. She considers the general case of testing possibly nonlinear restric-

tions in models estimated with Generalized Method of Moments (GMM). Here, we specialize the description
for the simple case of no Granger-causality restrictions in models whose parameters are consistently esti-
mated with OLS, such as Granger-causality regressions. She also considers the case of tests on subsets of
parameters, that is, in the case of Granger-causality regressions, tests on whether x; Granger-causes y; in

the model yyp, = 18, + 2177 + €t4n-
8Note that the test is designed to have power in situations where there is at most a one-time break in the

parameters. However, by construction, since the test uses a sup-type procedure, in the presence of multiple
breaks in predictive ability the test will pick up the largest break, and it is therefore robust to the presence

of multiple breaks.



predictive ability may potentially appear only in a sub-sample. As such, the null hypothesis
involves the irrelevance of the predictor while allowing the relationship between the predictor
and the target (dependent) variable to be possibly time-varying.

The test is implemented as follows. Let Bh and EQT denote the OLS estimators before
and after the break:

- 1 /1
517 = (;thx;) (;thyt-i-h)?

t=1 t=1

. 1 T AN 1 T
Par = (T - t:;H xtmt) <T - t:;tl xty“rh) '
The test builds on two components: %Bh + (1 — %) Bzr and BlT — BzT- The first is simply the

-1 T -1
(% ) xtyt—l-h) )

t=1
a test on whether this component is zero is able to detect situations in which the parameter

~ . T
full-sample estimate of the parameter, %3 1T+(1 — ;lp) Bo, = (% > 13th>
t=1

B, is constant and different from zero. However, if the regressor Granger-causes the depen-
dent variable in such a way that the parameter changes but the average of the estimates
equals zero (as in the example previously discussed), then the first component would not be
able to detect such situations. The second component is introduced to perform this task. It
is the difference between the parameters estimated in the two sub-samples; a test on whether
this component is zero is able to detect situations in which the parameter changes. Rossi
(2005) proposes several test statistics, among which the following:

QLR; = sup (o (3)

7=[0.15T7,...,[0.85T]
=i = £ 5 Lewl(1) 0] 0
g T —jo1sm) 0.7 2) "
| lossT] g

Mean —W; = — — &7 5
can T TT:[%EJT} 07 T (5)

Where:g Q); = ( (BIT - BQT), <%Bl7’ + (1 - %) //527), ) ‘771 <

5 _ 280,57 S0, 0
0 T18 518, )’

T

9The necessity to trim the set of values for 7 such that 7 = [0.1577, ..., [0.857] derives from the fact that

one needs a sufficient number of observations to estimate 317 and BQT — see Andrews (1993) for example.
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for €1 p = yeun — :C;B and (6, 7) are HAC estimates of the relevant variances. If there is

J
(T —1)"?

no serial correlation in the data, only the first component in (6) and (7) is relevant. Under
the null hypothesis of no Granger-causality at any point in time, (5, = 5 =0, Vt), QLR
Mean — W} and Exp — W have asymptotic distributions whose critical values depend on
the number of predictors, p, and are tabulated in Rossi’s (2005) Table B1. For convenience,
a subset of the table is reproduced in Table A.1 in Appendix 1.

The Granger-causality test robust to parameter instabilities has been shown to be useful
in practice. For example, it was used by Rapach and Wohar (2006) to provide empirical
evidence on predictive ability of asset returns, by Giacomini and Rossi (2006) to demonstrate
that the term structure Granger-causes future output growth, and by Chen, Rogoff and Rossi
(2010) to provide empirical evidence that exchange rates Granger-cause commodity prices.
Note that the tests (3, 4, 5) detect in-sample Granger-causality that appeared at some point
in the historical sample, which is in many ways similar to pseudo-out-of-sample forecast
evaluation procedures whose goal is to evaluate whether, historically, there was forecasting
ability; one might instead be interested in detecting whether Granger-causality currently
exists, to exploit it for forecasting. An example of the latter is Pesaran and Timmermann’s
(2002) ROC procedure, discussed in Section 2.3.2.

2.2.2 If There Are Instabilities in Predictive Relationships, How Do Researchers
Establish Which Model Forecasts the "Best"?

A second, important series of tools commonly used by practitioners to evaluate forecasts
are out-of-sample forecast comparison tests. Typically, they involve comparing two h—step
ahead forecasts for the variable 1;, which we assume for simplicity to be a scalar.

We assume that the researcher has divided the sample of size, T' + h, into an in-sample

11



portion of size R and an out-of-sample portion of size P, and obtained two competing
sequences of h—step ahead out-of-sample forecasts. Let the first model be characterized by
parameters #; and the second model by parameters 0. For a general loss function L (.), we

T

thus have a sequence of P out-of-sample forecast loss differences, {ALHh (@t R)}
t=R

. N T
= {L(l)(yt+h, 01.01) — LD (yern, 6’2,t7R)} , which depend on the realizations of the variable
R

and on the in-sample parameter estimates for each model, @,R = [/qut R,/Q\;,t’ r)- These
parameters are typically estimated only once, using a sample including data indexed 1, ..., R
(fixed scheme) or re-estimated at each t = R, ..., T over a window of R data including data
indexed t — R+1, ..., t (rolling scheme) or re-estimated at each t = R, ..., T over a window of
R data including data indexed 1, ...,t (recursive scheme). See Section 2.3.1 for more details.
In this section, we assume that the researcher is using either a rolling scheme with a fixed
window size R or a fixed scheme, and discuss the recursive window scheme as a special case.
Also, here and in the rest of the chapter, we simplify notation, and denote the sequence of

N T
out-of-sample forecast error loss differences {ALt+h (Ht, R)} as:
t=R

{ALt+h}, fort:R,R+1,...,T. (8)

For example, in the case of a quadratic loss function, eq. (8) is the sequence of the difference
between the two models’ squared forecast errors, and their average is the Mean Squared
Forecast Error, or MSFE.

Typically, researchers establish which model forecasts the best by looking at the average
out-of-sample forecast error loss difference. For example, the statistic proposed by Diebold
and Mariano (1995) and West (1996), which we refer to as DMWp or MSE —t, is:

T
DMWp =5 'P7'>> " AL, (9)
t=R

where 52 is a HAC estimator of

T
o? = Tlgr;o var (P_l/2 Z]%ALtJrh) . (10)
t=

The limiting distribution of DM Wp is typically obtained under stationarity assumptions.

The implications of structural instability for forecast evaluation have not been formally

11

investigated in the literature until relatively recently.!! Giacomini and Rossi (2010a and

0P is such that R+ P +h =T + h.
' The typical approach to forecast evaluation, based on assessing the expected loss of some forecast relative

12



2010b) focus on the relative evaluation of two models.!? In particular, Giacomini and Rossi
(2010a) test the null hypothesis:

E(ALj) =0, Vit =R, ... T, (11)

They introduce two classes of methods, which depend on whether one considers a smooth
change or a one-time change at an unknown date under the alternative hypothesis. Note that
the conventional tests by Diebold and Mariano (1995), West (1996), Clark and McCracken
(2001), Giacomini and White (2005) and Clark and West (2006, 2007) would assume that
E (ALjyy) is constant over time (E (ALjy,) = i), and test the hypothesis that 4 = 0 by a
standard t-test. Note that the latter tests differ on the specification of the null hypotheses
and on the treatment of parameter estimation error. We refer to West (2006) as well as the
chapter by Clark and McCracken (in this Handbook) for an extensive review of conventional

13 The methodologies proposed by Giacomini and Rossi (2010a)

tests of predictive ability.
can be implemented no matter which of the latter approaches the researcher prefers.
Smooth change in relative performance. In this scenario, the models’ relative performance

is estimated by a kernel estimator, which, for the rectangular kernel, amounts to computing

to that of a benchmark, starts with the premise that there exists a forecast that is "globally best", in the
sense that its performance is superior to that of its competitors at all time periods. From an econometric
point of view, this means assuming that the expectation in the the measure of performance, F[L (-)], is
constant over time, and can therefore be estimated by the average loss computed over the entire out-of-
sample period. In the applied literature, some authors more or less explicitly acknowledge that this might
be a restrictive assumption by computing the average loss over subsamples that are chosen in an arbitrary
way (e.g., the 1980s and the 1990s) (e.g., Stock and Watson, 2003, and D’Agostino et al., 2008). The typical
finding of these studies is that the performance varies widely across subsamples. Whereas the analysis in
this applied literature is informal, Giacomini and Rossi (2009, 2010a and 2010b) have recently introduced
formal methods for forecast evaluation in the presence of instability. Giacomini and Rossi (2009) focused
on "absolute measures" of accuracy, wheareas Giacomini and Rossi (2010a and 2010b) considered "relative

measures".
12Giacomini and Rossi (2010b) consider the following local-level model for in-sample loss differences:

AL, = p, +¢e¢,t =1,...,T, and propose a method for testing the hypothesis of equal performance at each

point in time: Hy : p, = 0 for all ¢.
13Note that the Giacomini and White (2006) test requires forecasts to satisfy a mixing assumption. Thus,

the test is robust to "small" structural changes that satisfy the mixing assumption, but not robust to breaks

that generate non-stationarity.
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rolling average losses:!?

t+m/2—1
fy=m" Y ALjy, t=R+m/2,...T—m/2+1 (12)

j=t—m/2
In practice, their test involves computing the sequence of statistics:'?

t+m/2—1
F,=6"'m " Y ALjy, t=R+m/2,...T—m/2+1, (13)

j=t—m/2

where 5° is a HAC estimator of (10), e.g.,

-1 T
52 = Z (1—|s/q)P" Z ALy nALyps, (14)
s=—g+1 =R

and ¢ is an appropriately chosen bandwidth (see e.g., Andrews, 1991 and Newey and West,
1987).16 To test the null hypothesis of equal predictive ability at each point in time against
the alternative that one of the two models forecasts the best at least one point in time,

Giacomini and Rossi (20010a) propose the following Fluctuation test statistic:
Fp :mtaX|Ft\. (15)

The null hypothesis is rejected at the 100a% significance level against the two-sided alter-
native for some ¢ when max, |Fi| > k&%, where k&% is the appropriate critical values. The
critical values depend on J, and are reported in their Table 1.7 Selected values are repro-
duced in Table A.2 in the Appendix for convenience. Critical values for testing H, against
the one-sided alternative E (AL;;,) > 0 for some ¢ are reported as well in Table A.2 for

various choices of 9, in which case the null is rejected when max; F; > kSR.

!4 Here we use a rectangular kernel estimator centered at time j + h; one-sided kernels could alternatively
be used.

15To test the null hypothesis, one has two options: either considering the standard nonparametric approx-
imation which assumes that the bandwidth m/P goes to zero at an appropriate rate as m, P — oo, or to
consider a different asymptotic approximation that assumes m/P to be fixed and equal to § as m, P — oc.
That is, :/éz—@o 5 = 0. Giacomini and Rossi (2010b) show that in the former case one could use uniform
confidence bands to construct a test, but that the procedure has poor finite sample properties.

16 Alternatively, the variance can be estimated in each of the rolling windows, /0\? = Z‘z;iqﬁrl(l —1s/q))
m~! Ezifl_/fr;/; ALjp,ALjyp—s, , and the test be constructed as: F; = m~1/2 Z;;T_/fnﬁ &\IlALj+;L, t =
R+m/2,.... T —m/2+1.

1"Under the null hypothesis (??), Giacomini and Rossi (2009) show that the asymptotic distribution of F}

is a functional of Brownian motions.
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The test statistic F} in (13) is equivalent to Diebold and Mariano’s (1995) and Giacomini
and White’s (2006) (unconditional) test statistic, computed over rolling out-of-sample win-
dows of size m. Giacomini and Rossi (2010a) show that their approach can be generalized to
allow for any other commonly used for out-of-sample predictive ability comparisons, as long
as their asymptotic distribution is Normal. In particular, one could use the test statistics
proposed by West (1996) or by Clark and West (2006, 2007), which are respectively applica-
ble to non-nested and nested models.'® The adoption of West’s (1996) framework involves
replacing o in (14) with an estimator of the asymptotic variance that reflects the contribu-
tion of estimation uncertainty (see Theorem 4.1 of West (1996)). For the nested case, the
use of the Clark and West (2006, 2007) test statistic in practice amounts to replacing AL,
in (13) with Clark and West’s (2006, 2007) corrected version).

Also note that West’s (1996) approach allows the parameters to be estimated using a
recursive scheme, in addition to a rolling or fixed scheme. In that case, let {WtOOS } denote
a sequence of West’s (1996) test statistics for h-steps ahead forecasts calculated over recursive
windows (with an initial window of size R) for t = R+ h+m/2,...,T —m/2 + 1. Giacomini
and Rossi (2010a) show that the null hypothesis of equal predictive ability is rejected when
max, [IW00S| > kyeey/THR (14242, where (o, k) are (0.01,1.143), (0.05,0.948) and
(0.10,0.850) .

One-time reversal in the relative forecasting performance at unknown date. In this sce-
nario, the alternative hypothesis postulates a one-time change in relative performance at an
unknown date.!? The test is performed as follows:

(i) Consider the test statistic

QLRp = sup®(t),t € {[0.15P],...[0.85P]},
®(t) = LM+ LM;(t),

18The fundamental difference between these approaches and Giacomini and White (2006) is that they test
two different null hypotheses: the null hypothesis in West (1996) and Clark and West (2006, 2007) concerns
forecast losses that are evaluated at the population parameters, whereas in Giacomini and White (2006) the
losses depend on estimated in-sample parameters. This reflects the different focus of the two approaches on
comparing forecasting models (West, 1996, and Clark and West, 2006, 2007) versus comparing forecasting

methods (Giacomini and White, 2006).
19Note that the test against one-time change in the relative performance of the models will have power

against multiple reversals since it would capture the largest reversal. It might also be interesting to extend

the approach to multiple breaks following Bai and Perron (1998).
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where

LM, = &°2p!

t T
LMy () = 5P (t/P) " (1= t/P) " [ ALy — (4/P) Y AL,
j=R J=R

and 6° is as in (14). Reject the null hypothesis Hy : E[AL; ] = 0, for every t = R, ..., T
when QLRp > k,, where (o, k,) are, e.g., (0.01,13.4811), (0.05,9.8257) and (0.10, 8.1379) .

(ii) If the null is rejected, compare LM; and sup, LM, (t), t € {[0.15P], ... [0.85P]} with
the critical values: (2.71,7.17) for o = 0.10, (3.84,8.85) for a = 0.05, and (6.63,12.35) for
a = 0.01. If only LM rejects, conclude that one model is constantly better than its com-
petitor. If only LMs rejects, conclude that there are instabilities in the relative performance
of the two models but neither is constantly better over the full sample. If both reject, then
it is not possible to attribute the rejection to a unique source.

(ili) Estimate the time of the change by t* = argmax;c(o.15p,..0.85p3 LM> (1).

(iv) Estimate the path of relative performance as

{ LS ALy, fort <t

j=t*+1

Note that the Fluctuation and the One-time reversal tests capture changes other than in
the conditional mean (such as changes in the variance of the forecast error), whereas Rossi’s
(2005) test does not.*

One might think that the problem of time variation in models’ relative forecasting per-
formance is minor. On the contrary, substantial time-variation in models’ relative predictive
ability of inflation, for example, has been documented since Stock and Watson (2007). They
notice that the root mean squared error (RMSE) of univariate benchmark inflation forecasts
(obtained using either autoregressive or random walk models) has declined sharply during the
period 1990s-early 2000 relative to the 1970s or early 1980s since inflation (like many other
time series) has been much less volatile. This implies that inflation has been easier to fore-

cast in the former period. However, on the other hand, the relative improvement of standard

20Tt might be interesting to directly model relative out-of-sample forecast error losses as following a regime
switching process. To the extent that there is cyclical behavior in relative performance, and that it can be
captured using a regime switching model, adopting a specification that accommodates this variation might

improve inference.
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multivariate forecasting models (e.g. Phillips curve models) over the univariate benchmark
model has decreased in the 1990s-early 2000 relative to the previous period. Therefore, in a
sense, it is also true that inflation has become harder to forecast. Stock and Watson (2007)
propose a time-varying trend-cycle model for univariate inflation which will be reviewed in
details in Section 2.3.2. According to their model, during the 1970s the inflation process
was well approximated by a low-order autoregression (AR) with a substantial permanent
component (akin to a trend) whose variance was large; thus, the estimation of such perma-
nent component provided large gains relative to simple univariate benchmark models, even
though this resulted in a large MSFE. However, the coefficients of the AR model changed
since 1984, and the AR model has become since then a less accurate approximation to the
inflation process.

Stock and Watson’s (2007) findings are consistent with recent results by Rossi and Sekh-
posyan (2010), which we discuss at length as they are related to the empirical analysis in this
chapter. Rossi and Sekhposyan (2010) use Giacomini and Rossi’s (2010a) Fluctuation test to
empirically investigate whether the relative performance of competing models for forecasting
U.S. industrial production growth and consumer price inflation has changed over time. They
focus on the same models considered by Stock and Watson (2003), but use monthly data.
Their predictors include interest rates, measures of real activity (such as unemployment
and GDP growth), stock prices, exchange rates and monetary aggregates. Their benchmark
model is the autoregressive model. Using both fully revised and real-time data, they find
sharp reversals in the relative forecasting performance. They also estimate the time of the
reversal in the relative performance, which allows them to relate the changes in the rela-
tive predictive ability to economic events. In particular, when forecasting output growth,
interest rates and the spread were useful predictors in the mid-1970s, but their performance
worsened at the beginning of the 1980s.2 When forecasting inflation, the empirical evidence
in favor of predictive ability is weaker than that of output growth, and the predictive ability
of most variables breaks down around 1984, which dates the beginning of the Great Mod-
eration. Such predictors include employment and unemployment measures, among others,
thus implying that the predictive power of the Phillips curve disappeared around the time
of the Great Moderation. Section 4 revisits this empirical evidence using data up to 2010

(whereas Rossi and Sekhposyan’s (2010) sample ended in 2005) and using quarterly data.?

21Similar results hold for money growth (M2), the index of supplier deliveries, and the index of leading

indicators.
22Rossi and Sekhposyan (2010) also document the robustness of their results to the use of real-time data
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D’Agostino et al. (2008) also consider sub-samples identified by the Great Moderation and
show a similar decrease in predictive ability of factor models as well as forecast combinations
for inflation. They also find a decrease in predictive ability in GDP growth at the time of the
Great Moderation. Their timing of the reversal in predictive ability seems to be at odds with
Rossi and Sekhposyan (2010), who estimated the largest break to be around the mid-1970s;
however, if it were in the mid-1970s, one would still find a decrease in predictive ability by
looking at the two sub-samples before and after the Great Moderation.

Similar findings hold for other databases. Carstensen et al. (2010) evaluate the predic-
tive ability of seven leading indicators for euro area industrial production. They implement
Giacomini and Rossi’s (2010a) Fluctuation test to evaluate the forecasting stability of each
indicator over time, especially during booms and recessions. They find that a simple autore-
gressive benchmark is difficult to beat in normal times whereas the indicators have advanta-
geous predictive ability in booms and recessions. A similar result is found by Diaz and Leyva
(2008) for forecasting inflation in Chile. Additional examples of time variation in the relative
performance of financial models over time and linked to the business cycle include Rapach,
Strauss and Zhou (2010) and Henkel, Martin and Nardari (2011), who find that stock return
predictability concentrates during recessions, and Paye and Vol (2011), who find that the
ability of macroeconomic variables to improve long horizon volatility forecasts concentrates
around the onset of recessions. A series of papers have also built on the empirical evidence
of a breakdown in the ability of forecasting models to predict U.S. inflation and output: see
Castelnuovo et al. (2008) for a regime-switching model in Taylor rules which finds a switch
towards active monetary policy at the time of the Great Moderation. Fernandez, Koenig and
Nikolosko-Rzhevskyy (2010) evaluate how well several alternative Taylor rule specifications
describe Federal Reserve policy decisions in real time. Giacomini and Rossi (2010a) evaluate
the instability in the predictive ability of fundamental-based models of exchange rates. They
argue that, as shown by Rossi (2006), the estimates of exchange rate models with economic
fundamentals are plagued by parameter instabilities, and so might the resulting exchange
rate forecasts. They show that conventional out-of-sample forecast comparison tests do
find some empirical evidence in favor of models with economic fundamentals for selected
countries. However, the Fluctuation test indicates that the relative forecasting performance

has changed over time. In fact, their procedures indicate that the Deutsche Mark and the

(Croushore and Stark, 2001): the evidence in favor of predictive ability in the early part of the sample is
slightly weaker for a few series when using real-time data; however, their main qualitative conclusions are

robust to the use of real-time data.
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British Pound exchange rates were predictable in the late Eighties, but such predictability
has disappeared in the Nineties. Conventional out-of-sample tests would have been unable
to uncover such evidence in favor of models with economic fundamentals. Finally, Galvao
(2011) considers a smooth transition regression to model regime changes in high frequency
variables for predicting low frequency variables using a MIDAS framework.?® She focuses
on real-time forecasts of U.S. and U.K. output growth using daily financial indicators. The
Fluctuation test reveals strong evidence of instability in the predictive content of financial
variables for forecasting output growth. In addition, she finds evidence that the inclusion of

nonlinearities (captured by the smooth transition model) may improve predictive ability.

2.2.3 If There Are Instabilities In Forecasting Performance, How Should Re-

searchers Determine Whether Forecasts Are Optimal?

Under a MSFE loss function, optimal forecasts have several properties: they should be
unbiased, the one step ahead forecast errors should be serially uncorrelated, and h-steps
ahead forecast errors should be correlated at most of order h — 1. A large literature has
focused on empirically testing whether forecasts are actually optimal — see Granger and
Newbold, 1986, Diebold and Lopez, 1996, Patton and Timmermann (2011), among others.

However, traditional tests for forecast optimality are subject to the same issues as the
other tests previously discussed: they are potentially inconsistent in the presence of insta-
bilities. In a recent paper, Rossi and Sekhposyan (2011b) have developed methodologies for
implementing forecast rationality and forecast optimality tests robust to instabilities. They
follow the general framework developed in West and McCracken (1998). Let’s assume one is
interested in the (linear) relationship between the prediction error and a vector of variables
known at time ¢. Let the h-steps ahead forecast made at time t be denoted by 7,4 and let
a (p x 1) vector of variables known at time ¢ to be denoted by g;. The variables in g; are not
used to produce the forecast; rather, they will be used to study whether their correlation
with the forecast error is zero; in fact, if the forecasts are optimal, the forecast error should
be uncorrelated with any information available at the time the forecasts are made. Finally,
let the forecast error of a model evaluated at the true parameter value, #*, be denoted by

Uiy, and its estimated value be denoted by v, ,.

ZMIDAS models are designed for modeling variables that are available at different frequencies; for a

discussion of MIDAS regressions, see Andreou, Ghysels and Kourtellos (2010).
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Consider the regression:
Vg = gy @+ 1y, fort =R, .. T, (17)

where ¢ is a (p x 1) parameter vector. The null hypothesis of interest is Hy : ¢ = ¢, where
typically ¢, = 0. For example, in forecast rationality tests (Mincer and Zarnowitz, 1969),
Verns Gt = (1, Yernpn), @ = [¢1, @) , and typically a researcher is interested in testing whether
¢, and ¢, are jointly zero.?* For forecast unbiasedness, g; = 1, for forecast encompassing g;
is the forecast of the encompassed model, and for serial uncorrelation ¢g; = v;. We will refer
to all these tests as "tests for forecast optimality". To test forecast optimality, one typically

uses the following re-scaled Wald test:
~ ~ ~
Wr=¢ Vo, (18)

where ‘7¢ is a consistent estimate of the long run variance of the parameter vector obtained
following West and McCracken (1998). West and McCracken (1998) have shown that it is
necessary to correct eq. (18) for parameter estimation error in order to obtain test statistics
that have good size properties in small samples, and proposed a general variance estimator
as well as adjustment procedures that take into account estimation uncertainty.

Rossi and Sekhposyan (2011b) propose the following procedure, inspired by Giacomini
and Rossi (2010a). Let ¢, be the parameter estimate in regression (17) computed over
centered rolling windows of size m (without loss of generality, we assume m to be an even
number). That is, consider estimating regression (18) using data from ¢ — m/2 up to ¢ +
m/2—1, fort =m/2,...,P—m/2+1. Also, let the Wald test in the corresponding regressions
be defined as:

Wim :% ‘7¢Tt1$t7 fort =m/2,...,P—m/2+1, (19)

where ‘A/W is a consistent estimator of the asymptotic variance of the parameter estimates in
the rolling windows obtained following West and McCracken (1998). Rossi and Sekhposyan
(2011b) refer to W, as the Fluctuation optimality test. The test rejects the null hypothesis
Hy: E (?45,5) =0forall t =m/2,..,P —m/2+ 1 if max; W,,, > kii, where kfﬁ are the
critical values at the 100a% significance level. The critical values are reported in their Table
1 for various values of ;1 = [m/P] and the number of restrictions, p.>> The critical values at

5% significance level are reproduced in Table A.3 in Appendix 1 for convenience for the cases

24This is similar to testing whether the slope is one and the intercept is zero in a regression of ;. onto

a constant and y; 4 p-
25Here we assume that the researcher is interested in jointly testing whether all the ¢ are equal to zero,
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of one and two regressors (that is, the cases of forecast unbiasedness and Mincer-Zarnowitz’s
(1969) regressions).
A simple, two-sided t-ratio test on the s-th parameter, gb(s), can be obtained as gAbES)

17(1)?3)/ t2, where \A/d)(s)ﬂt is element in the s-th row and s-th column of ‘A/¢7t; then, reject the null

hypothesis Hy : E 2 = 6 for all t = m 2,...,P —m/2+1 at the 100a% significance
¢ 0

level if max;, 5?‘771/2

¢t
Rossi (2010a) — see Table A.2 in Appendix 1.

Rossi (2011) considers the robustness of forecast rationality tests to instabilities in Federal

> k9E where kG are the critical values provided by Giacomini and

Reserve “Greenbook” forecasts of quarter-over-quarter rates of change in GDP and the
GDP deflator, the same database considered in Faust and Wright (2009) and Patton and
Timmermann (2011). Using both heuristic empirical evidence of time variation in the rolling
estimates of the coefficients of forecast rationality regressions as well as the Fluctuation
optimality test, she rejects forecast rationality. The Fluctuation optimality test, eq. (19), is
also applied to the Patton and Timmermann’s (2011) optimal revision regression tests, which
shows that forecast rationality is not rejected for the GDP deflator, whereas it is rejected
for GDP growth mainly in the late 1990’s. Rossi and Sekhposyan (2011b) use the same
technique to test whether the Federal Reserve has an information advantage in forecasting
inflation beyond what is known to the private forecasters. They find evidence that the
Federal Reserve has an informational advantage relative to the private sector’s forecasts,
although it deteriorated after 2003.2

2.3 Estimation When the Predictive Content Is Unstable Over
Time

Given the widespread empirical evidence of instabilities in the data, established in the pre-
vious section, it is reasonable to ask whether it is possible to exploit such instabilities to
improve the estimation of forecasting models. For example, one might expect that, in the
presence of a one-time break in the parameters, it might be possible to improve models’

estimation by determining the time of the break and then use only the observations after the

and hence the number of restrictions is p. Alternatively, one might be interested in testing whether a subsets
of ¢ are equal to zero, in which case the test statistic should consider only a subset of ¢ and the degrees of

freedoms should be adjusted accordingly to be equal to the subset dimension.
26They also find empirical evidence against rationality in the Money, Market and Services (MMS) survey

forecasts once instabilities are taken into account.
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breaks for forecasting, as this would provide unbiased parameter estimates. However, this
intuition might be misleading. First, it might be very difficult to constructively utilize break
dates to improve forecasts in practice because the time of the break might be imprecisely es-
timated. As shown by Elliott and Muller (2007), paradoxically, even in a simple model with
a single, one-time break, it is more difficult to determine the exact break date than it is to
determine whether there was a break or not in the data. Elliott and Muller (2007) also show
that standard methods for constructing confidence intervals for the break date have poor
coverage rates, and propose a new methodology that accurately captures the uncertainty in
the estimated break date. Second, even if one were able to estimate the time of the break
with sufficient precision, Pesaran and Timmermann (2002) show the existence of a trade-off
between bias and variance in the evaluation of MSFE, which might favor estimation using
more data than just the observations after the break. In a nutshell, while the detection of
structural breaks and their type are clearly important for econometric modeling, it is difficult
to use that information productively to improve forecasts.

Overall, several estimation procedures have been proposed:

(i) Ad-hoc estimation methods, such as rolling or recursive estimation schemes, discounted
least squares, and exponential smoothing. They provide an agnostic, non-parametric way to
sequentially update the parameter vector. But which one should be used? Should we give
all the observations the same weight (as the rolling estimation window does, for example),
or should we give more weight to recent observations and discount the older ones (as dis-
counted least squares does)? And how should researchers choose the size of the estimation
window? Researchers have also suggested to improve forecasts by averaging across window
sizes (Pesaran and Timmermann, 2007), as well as forecast evaluation methods whose con-
clusions are robust to the estimation window size (Inoue and Rossi, 2010, and Hansen and
Timmermann, 2011).

(ii) Estimate historic breaks, by either testing for breaks (e.g. using Andrews, 1993, Bai
and Perron, 1998, Elliott and Mueller, 2006, among others), or by adapting the estimation
window to the latest break (Pesaran and Timmermann, 2002), or by explicitly modeling
the size and duration of the breaks process, either via time-varying parameter models (with
a change point every period, as in Stock and Watson, 2007) or models with multiple dis-
crete breaks (Pesaran, Pettenuzzo and Timmermann, 2006, and Koop and Potter, 2007), or
intercept corrections (Clemens and Hendry, 1996).

(iii) Combine forecasts, either by using equal weights or by using time-varying weights

estimated using either frequentist procedures or Bayesian model averaging.
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In what follows, we review each of these approaches. Section 4 provides an evaluation of

how several of these estimation methodologies perform in practice.

2.3.1 If There Are Instabilities, Do Ad-Hoc Estimation Methods Help in Fore-

casting?

Ad-hoc forecasting methods are not based on any parametric model. They are simple to
implement and still used by practitioners. There are several such ad-hoc methods, differing
according to the weight that they give to observations.

(i) Simple exponentially weighted moving average (EWMA or exponential smooth-

ing). The EWMA forecasts made at time ¢ for predicting y;,, are:

ES, ES,
yt+hﬁ = gy + (1 — o) yt|t_{1 (20)

where «; is the adaptive parameter. a; can be fixed a-priori or estimated by minimizing the
sum of squared forecast errors; a large estimated value of «; is a signal that the series is
close to a random walk. The initial value for the recursion can be the initial observation.?
Holt (1957) and Winters (1960) generalized the approach to include a local linear trend. See
Harvey (1989, sec. 2.2.2).

(ii) Discounted least squares. A general version of the simple discounted least squares
method (DLS, Brown, 1963) in the model with exogenous regressors such as eq. (1) implies
choosing parameters estimates that minimizes the discounted sum-of-squared residuals. For
simplicity of exposition, consider the simplified model: ;. = 8,2 + €rn, t = 1,...,T. Let
Yirh = [YirhRit, s Yern] s Xop = [ngRH,...,xﬂ/, and W; = diag (5R_l,...,5, 1) be the
matrix of weights to discount past observations. Then, DLS estimates the parameters at
time ¢ as (see Agnew, 1982):%

~DLS

-1
By = (Xi,thit,R) Xé,thQHM

(21)
and

DLS,f 7
Yernt = Bt

2TFor h = 1 and «; constant, the EWMA corresponds to a forecast that is a weighted average of previous

t—1 :
observations, where the weights are declining exponentially: yfﬂlj; = > wiyi—j, and w; = A (1 — \)’.
§=0

DLS,f
Yivape

2When h = 1 and the model includes only a constant, the formula simplifies to:

=1 t—=1
(Zo (V) (Zo (Wyt_j) , as in Brown (1963).
= =
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The weights can be either imposed a-priori or estimated.?? Typically, one might prefer to
give higher weight to more recent observations and lower weight to more distant observations,
which would be a successful strategy if later observations reflect more accurately the most
recent data generating process.

(iii) Rolling and recursive window estimation schemes. Note that several esti-
mation weighting schemes that have become popular in the forecasting literature are special
cases of eq. (21). For example, the recursive window estimation scheme is such that 6 = 1,
that is all observations are weighted equally, and R = ¢, that is all observations in the sample

up to time ¢ are used in the estimation:

t -1/
~REC -1
Bre = (X:t,txt,t) _Q,tQtJrh = (Z xjx;) (Z xjyj”rh) ) (22)
j=1 j=1

whereas the rolling window estimation scheme with window size R is such that:

t -1 t
~ROL -1
B = (Xi X, p) x;,Rgm:( > a:jas;) ( >, xjyj+h). (23)

j=t—m+1 j=t—m+1

Rolling or recursive window estimation procedures are agnostic, non-parametric ways to
update the parameter vector. But which one should be used? Pesaran and Timmermann
(2002) show that, when regressors are strictly exogenous, in the presence of a structural break
in the parameters OLS estimates based on post-break data are unbiased. Including pre-break
data always increases the bias; thus, there is always a trade-off between a larger squared bias
and a smaller variance of the parameter estimates as more pre-break information is used.
In particular, rolling estimation is advantageous in the presence of big and recurrent breaks
whereas recursive estimation is advantageous when such breaks are small or non-existent.
Pesaran and Timmermann (2002) use this trade-off to optimally determine the window
size. On the other hand, Pesaran and Timmermann (2005) show that the situation can
be very different in autoregressive models, for which the coefficients inherit a small sample
bias. They show that when the true coefficient declines after a break, both the bias and the
forecast error variance can be reduced using pre-break data in the estimation. Thus, in these
cases, rolling windows could perform worse than recursive windows even in the presence of
breaks. This might explain why, in some cases, recursive window forecasts perform better

than rolling window forecasts. As discussed in Pesaran and Timmermann (2005), the choice

~ T
?E.g. one might estimate ), , = argmin Y. w7 (Yen — B;lxt)z, where w? are weights and are typi-

B t=7—R+1
cally constrained to be between zero and one and to sum to unity.
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of the window size depends on the nature of the possible model instability and the timing
of the breaks. A large window is preferable if the data generating process is stationary, but
comes at the cost of lower power since there are fewer observations in the evaluation window.
Similarly, a shorter window may be more robust to structural breaks, although it may not
provide as precise estimation as larger windows if the data are stationary.

Pesaran and Timmermann (2007) find that the optimal length of the observation window
is weakly decreasing in the magnitude of the break, the size of any change in the residual
variance, and the length of the post-break period. They also consider model combinations as
a competitor to the optimal choice of the observation window. Their approach is to determine
the window size that guarantees the best forecasting performance, especially in the presence
of breaks. They propose several methods in practice. Among the methods they propose,
several are available if the researcher possesses an estimate of the break, in which case, using
either only the post-break window data to estimate the parameter or a combination of pre-
and post-break data according to weights that trade-off bias against reduction in parameter
estimation error, might improve forecasting performance. A difficulty in the latter methods
is the fact that, in practice, it may be difficult to have a precise estimate of the time and
magnitude of the break. Thus, rather than selecting a single window, it might be convenient
to combine forecasts based on several estimation windows. A very simple way to combine
forecasts based on several estimation windows is to simply average them using equal weights.
That is, imagine that the researcher is interested in estimating the parameters of the models
using the latest R available observations, and imagine that the researcher’s minimum number
of observations to be used for estimation is R. Denote the forecast for the target variable
h-steps into the future made at time ¢ based on data from the window size R (that is data
from time t — R+ 1 to t) by ytf Al (R). Then the average ("Ave") forecast proposed by

Pesaran and Timmermann (2007) is

t
W = =BT Syl () (24)

Pesaran and Timmermann (2007) demonstrate, via Monte Carlo simulations, that in the case
of many breaks, forecast combinations obtained in eq. (24) perform quite well, especially
when the magnitude of the break is very small and thus the break is more difficult to detect.

It is also possible that better forecasts be obtained by combining rolling and recursive
forecasts. Clark and McCracken (2009) show that there is a bias-variance trade-off between

rolling and recursive forecasts in the presence of model instability. By analyzing the trade-
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off, they analytically derive the optimal estimation window. Let y;1p, = S, + €41n, where
Eopn ~ iid (0,0%), B, = f* + T7V21(t > t*) A and 7 = t*/T. Note that the breakpoint is
local-to-zero, which allows Clark and McCracken (2009) to emphasize the importance of the

observation window in situations where structural break tests may have little power. The
t

OLS parameter estimate based on rolling windows of size R, will be /Broll,t =R' >y
j=t—Ri+1

and the one based on recursive windows will be §,..,

=t zt: y;. Note that the rolling
window parameter estimates are based on a partial sample vzfit)se size (R;) is allowed to
change as forecasting moves forward in time. Let #* be an estimate of the time of the break,
o be an estimate of o, and A be an estimate of the size of the break in the parameter.
Clark and McCracken (2009) show that the optimal window to use in the rolling scheme is
R* =t—T7 (so that the optimal window uses only data after the break) and that the forecast
that minimizes the MSFE is a weighted average of the rolling and recursive parameter

estimates:

~ ~ —1
D ) s b ot t*
atﬁrec,t + (1 - at) Broll,z‘ﬂ where ay = (1 + EAQT <1 B T)) ’ (25)

The result in eq. (25) can be explained, again, by noting that using data before the break in
the estimation of the parameter value after the break would lead to a bias in the parameter
estimate and in their forecast, which results in an increase in the MSFE of the recursive
forecast relative to the rolling; on the other hand, reducing the sample by choosing a window
of data that starts after the break causes an increase in the variance of the parameter
estimates, which results in an increase in the MSFE of the rolling forecast relative to the
recursive. How much more weight we should put on the recursive (rolling) forecast thus
depends on the values of the parameters. For example, the larger the estimated size of the
break in the parameter, 3, the higher the weight on the rolling window forecast. Similarly,
a higher variance of the error (02) leads to more imprecise parameter estimates for any given
sample, thus leading to a higher optimal weight on the recursive forecast. Finally, the closer
the break to the middle of the sample (% o~ %), the lower the weight on the recursive forecast;
in fact, if the break is at the very beginning or the very end of the sample, it is optimal
to use as many observations as possible to estimate the parameters. The fact that such
values might be imprecisely estimated might adversely affect the forecasting improvements
provided by eq. (25).

An alternative approach is suggested by Inoue and Rossi (2010) and Hansen and Tim-
mermann (2011). While Pesaran and Timmermann’s (2007) and Clark and McCracken’s
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(2009) objective is to improve the model’s out-of-sample forecasts, the objective of Inoue
and Rossi (2010) and Hansen and Timmermann (2011) is different. They are not interested
in improving the forecasting model nor to estimate the ideal window size. Rather, their
objective is to assess the robustness of conclusions of predictive ability tests to the choice
of the estimation window size. The choice of the estimation window size has always been a
concern for practitioners, since the use of different window sizes may lead to different em-
pirical results in practice. In addition, arbitrary choices of window sizes have consequences
about how the sample is split into in-sample and out-of-sample portions. Notwithstanding
the choice of the window size is crucial, in the forecasting literature it is common to only
report empirical results for one window size.

Inoue and Rossi (2010) note that reporting results based on one ad-hoc window size raises
several concerns. One concern is that it might be possible that satisfactory results (or lack
thereof) were obtained simply by chance, and are not robust to other window sizes. For
example, this may happen because the predictive ability appears only in a sub-sample of the
data, and whether the test can detect predictive ability depends on the estimation window
size. A second concern is that it might be possible that the data were used more than once
for the purposes of selecting the best forecasting model and thus the empirical results were
the result of data snooping over many different window sizes and the search process was not
ultimately taken into account when reporting the empirical results.>® Ultimately, however,
the estimation window is not a parameter of interest for the researcher: the objective is rather
to test for equal predictive ability and, ideally, researchers would like to reach conclusions
that are robust to the choice of the estimation window size.

Inoue and Rossi (2010) propose methodologies for comparing the out-of-sample forecast-
ing performance of competing models that are robust to the choice of the estimation and
evaluation window size by evaluating the models’ relative forecasting performance for a vari-
ety of estimation window sizes, and then taking summary statistics. Their methodology can
be applied to most of the tests of predictive ability that have been proposed in the literature,
including tests for relative forecast comparisons as well as tests of forecast optimality.

Let ALy (R) denote the test of equal predictive ability for non-nested model comparison
proposed by either Diebold and Mariano (1995) or West (1996), and implemented using
forecasts based either on a rolling window of size R or recursive/split estimation starting at
observation R. Similarly, let ALZ (R) denote Clark and McCracken’s (2001) ENCNEW test

300nly rarely do researchers check the robustness of the empirical results to the choice of the window size

by reporting results for a selected choice of window sizes.
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for nested models comparison based either on rolling window estimation with window size R
or recursive/split window estimation starting at observation R. Finally, let WWr (R) denote
tests for forecast optimality analyzed by West and McCracken (1998), including tests of fore-
cast encompassing (Clements and Hendry, 1993, Harvey, Leybourne and Newbold, 1998),
tests for forecast rationality (Mincer and Zarnowitz, 1969) and tests of forecast uncorrelat-
edness (Granger and Newbold, 1986, and Diebold and Lopez, 1996) based on forecast errors
obtained either by estimation on a rolling window of size R or recursive/split estimation
starting at observation R.

They suggest the following statistics:

R
Rr= sup |ALp(R)|, and Ar = (26)
Re{R..R} R-R+1 R+1 Z
R
RS = sup AL (R) and A5 = Z (27)
Rre{R,.R}
1 R
RYW= sup Wr(R), and AY = —— Y Wr(R), (28)
U refn.m) "OR-R+1 Rz;%

where R is the smallest window size considered by the researcher, R is the largest window size,
and Qp is a consistent estimate of the long run variance matrix.?! Inoue and Rossi’s (2010)
obtain asymptotic approximations to egs. (26), (27) and (28) by letting the size of the window
R be asymptotically a fixed fraction of the total sample size: ¢ = Tlglgo (R/T) € (0,1) .32
The null hypothesis of equal predictive ability or forecast optimality at each window
size for the R test is rejected at the significance level a when Ry > kZiC whereas the null
hypothesis for the A test is rejected when Ap > ké@ where the critical values (04, kfg)
and (a, kéc) for various values of ( = 711_1)130 (R/T)and { =1 — ¢ are reported in the tables
in Inoue and Rossi (2010). In practice, Inoue and Rossi (2010) recommend ¢ = 1 — ¢ and
¢ = 0.15. For such values, Table A.4 in Appendix 1 reports the critical value for the statistics

at the 5% significance level.

31See West (1996) for consistent variance estimates in eq. (26), Clark and McCracken (2001) for eq. (27)
and West and McCracken (1998) for eq. (28). Inoue and Rossi’s (2010) obtain asymptotic approximations
to egs. (26), (27) and (28) by letting the size of the window R be asymptotically a fixed fraction of the total
sample size: ¢ = Th_{%o (R/T) € (0,1).

$2Inoue and Rossi (2010) also consider cases where the window size is fixed — we refer interested readers

to their paper for more details.
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Interestingly, Inoue and Rossi (2010) show that in the presence of instabilities the power
of rolling out-of-sample forecast tests depends crucially on the rolling window size, and that,
similarly, the power of the recursive out-of-sample forecast tests does depend on the size of
the first estimation window size. The intuition is as follows. Imagine that we are comparing
the forecasting performance of two models, one of which (the large model) contains additional
regressors relative to the competitor model (the small model). Suppose that the additional
regressors are relevant only in a first part of the sample, and that they become insignificant
in the later part of the sample. The finding of a superior performance of the larger model
relative to the small model will clearly depend on when the predictive ability of the additional
regressors disappears relative to the size of the estimation window. In fact, if the predictive
ability disappears very early in the sample and the researcher uses a small window, he might
have a chance to pick up the superior predictive ability of the large model; however, if the
researcher uses a large window, he might miss the predictive ability since a large window will
"wash out" the better performance of the large model. On the other hand, a large window
would help finding evidence of superior predictive ability if there are no instabilities in the
data because it provides more precise estimates.

Hansen and Timmermann’s (2011) analysis is based on a similar concern about data
mining over the split sample point in forecasts based on recursive estimation. They focus on
nested models estimated via a recursive estimation scheme. They consider a different test

statistic for nested models, namely the following MSFE-t-type statistic:

P
" AL
Tp (p)E—Zt‘Rag =, (29)

where ALy, is the forecast error squared of the small model minus the forecast error squared
of the large model, p = jlgxgo (R/T) and 5° is a consistent estimate of the variance of ALy, },.
Following McCracken (2007) and generalizing his results, Hansen and Timmermann (2012)
show that, under the null hypothesis that the parameter on the additional regressors in the

large model are zero, the test statistic has the following limit distribution:

Tp (p) = Q/U_lB (u) AdB (u) — /U_QB (u)" AB (u) du, (30)

where A is a diagonal matrix with the eigenvalues of {2 on its main diagonal, and B; (u),
7 = 1,...,q are independent standard Brownian motions. Let the cumulative distribution
function of Tp (p) be denoted by F, 5 and its p-value by p (p), whose limiting distribution is
a Uniform, U (0, 1).
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Hansen and Timmermann (2011) make several contributions. The first is to show that

the limiting distribution in (30) can be simplified to:
B(1)* = p 'B(p)’ +1up, (31)

and can be simulated by /T — p(Z? — Z3) +1In(p) , where Z; and Z, are independent stan-
dard normal random variables. This limiting distribution is much simpler than the one
derived in Clark and McCracken (2005), which is advantageous when deriving its p-values, es-
pecially when the number of extra regressors in the model is large. Hansen and Timmermann
(2007) also show, via Monte Carlo simulations, that a researcher that data mines over several
values of the window size, p € [p, p], that is a researcher that reports pmin = min,e(, 5 p (p),
would typically over-reject for large values of the split point p. That is, a spurious rejection
of the null hypothesis of equal predictive ability is most likely to be found with large values
of p whereas true rejections of a false null hypothesis are more likely to be found for small
values of p.

If data were homoskedastic, Hansen and Timmermann (2007) recommend to first trans-
form the test statistic as follows: Sp(p) = (1 —p) *[Tp (p) — qInp|. In fact, the trans-
formed statistic has a limiting distribution that does not depend on p in the homoskedastic
case. However, in the heteroskedastic case the limiting distribution of Sp (p) still depends
on p and therefore does not have any advantages relative to using 7% (p) .

Hansen and Timmermann (2012) calculate the power of their proposed test Tp (p) under
local alternatives and show that the power of the test is highest when p is small. Thus, there
is a trade-off between size and power in the presence of data mining over the sample split:
the risk of rejecting the null hypothesis when it is true is highest when p is large; conversely,
the power of the test is highest when p is small.

To resolve the data mining problem, Hansen and Timmermann (2012) recommend the

following test statistic:

PElp;p]

There are several differences between this test statistic and the one proposed by Inoue and
Rossi (2010). The first is that Hansen and Timmermann (2012) propose to minimize the
p-value over the split-sample whereas Inoue and Rossi (2010) propose to maximize the test
statistic over the estimation window size: the two would be equivalent if the test statistic
were the same; however, note that for the case of nested models’ forecast comparison (the
case considered by Hansen and Timmermann, 2011), the latter focus on the MSFE-t test
statistic (eq. 29) whereas Inoue and Rossi (2010) focus on the ENCNEW test. Another

30



difference is that Inoue and Rossi (2010) consider the power of the test against parameter
instabilities, whereas Hansen and Timmermann (2012) consider the power of the test in
stationary environments. The advantage of the latter is that they can obtain detailed an-
alytical power results and theoretically derive for which split-point the test has the largest
rejection probability; the advantage of the former is that they consider the power of their
test against predictive ability that appears only in a sub-sample of the data via Monte Carlo
simulations, and can cover several test statistics for predictive ability. Finally, Hansen and
Timmermann (2012) focus on recursive window estimation schemes, whereas Inoue and Rossi
(2010) consider also rolling windows.

Hansen and Timmermann (2011) consider two interesting empirical analyses. The first
is the predictability of stock returns, in particular the work by Welch and Goyal (2008), who
found that the constant equity premium model produced better forecasts than models with
predictors such as the default spread or the dividend yield. They find that the predictive
ability is the strongest either for very small or very large values of p. A second empirical
analysis focuses on inflation forecasts in a factor model. Their test does not find empirical
evidence of superior predictive ability for the factor model over the simple autoregressive

benchmark.

2.3.2 1If There Are Instabilities, Does Estimation of Historic Breaks Help in

Forecasting?

The presence of widespread instabilities in forecasting have inspired researchers to estimate
models that allow for structural breaks. Several ways to incorporate time variation in the
estimation of forecasting models have been proposed: (i) estimate models with multiple,
discrete breaks at unknown points in time; or (ii) estimate time-varying parameter models
where the parameters are allowed to change with each new observation, either according to
a random walk or some other parametric process.

The detection of breaks is clearly an important issue in the literature: numerous in-
sample testing procedures have been developed for detecting instabilities, each one of which
depends on the assumptions made on the process underlying the instabilities. In particular,
one-time, discrete breaks are typically detected by using Andrews’ (1993) or Andrews and

Ploberger’s (1994) tests.*® Examples of full sample estimation of models with a one-time

33 Andrews (1993) proposed procedures to test for the presence of a one-time break at an unknown point in
time. Bai (1997) demonstrated how to use Andrews’ (1993) test to estimate the time of the break. Andrews
and Ploberger (1994) developed optimal tests for structural breaks.
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break include, among others, McConnell and Perez-Quiros (2000) for modeling the sharp
decrease in U.S. GDP growth volatility, Stock and Watson (2002) and Inoue and Rossi (2011)
for estimation of structural macroeconomic models that attempt to explain that decrease.®*
The presence as well as the timing of multiple, discrete breaks at unknown times can be
detected by Bai and Perron’s (1998) or Qu and Perron’s (2007) procedure. Examples of
full sample estimation of models with multiple discrete breaks include Rapach and Wohar’s
(2005) estimation of both inflation and real interest rates for several industrialized countries.
The presence of small and persistent time variation in the parameters can be detected by
Nyblom’s (1989) or Elliott and Muller’s (2006) test. Examples of full sample estimation of
models with time-varying parameters include Cogley and Sargent (2001, 2005) and Cogley
and Sbordone (2008), who model the parameters driving inflation and/or unemployment
dynamics in the U.S. as a random walk. See Stock (1994) for an overview and discussion of
in-sample tests for structural breaks.

While the literature discussed above has focused on the “in sample” detection and estima-
tion of models with time-varying parameter, a more recent literature has attempted to utilize
time-varying parameter models for forecasting. The latter is the objective of this Section.
One major difference between in-sample detection of breaks and out-of-sample forecasting
in the presence of breaks is that the particular type of instabilities does not matter in the
former but may play an important role in the latter. In fact, as shown by Elliott and Muller
(2006), conditional on the average magnitude of breaks being the same, the power of several,
widely used tests for structural breaks is close over a wide range of breaking processes; thus,
ignorance of which particular type of instability affects the data in practice does not matter
for the goal of conducting an in-sample powerful test to detect whether there was a break
in the data. Matters are very different when forecasting: the ability to forecast well may
depend on the ability of successfully capturing and exploiting the form of instability affecting
the data.

In what follows, we will review several papers that have successfully forecasted time

34McConnell and Perez-Quiros (2000) use structural break tests to identify a sharp decline in the volatility
of output (as well as consumption and investment), labeled “the Great Moderation.” Stock and Watson
(2002, 2003) perform counterfactual VAR and New Keynesian model analyses and conclude that the Great
Moderation was mainly caused by a decrease in the volatility of the shocks. Inoue and Rossi (2011) investigate
the sources of the substantial decrease in output growth volatility in the mid-1980s by identifying which of
the structural parameters in a representative New Keynesian and structural VAR models changed. They
show that the Great Moderation was due not only to changes in shock volatilities but also to changes in

monetary policy parameters, as well as in the private sector’s parameters.

32



series out-of-sample using time-varying parameter models. We will focus on the following

forecasting model (1), where, for simplicity, there are no control variables z;:
Yern = BTy + yn, for t =1,2,..T, (32)

where different choices of how [, evolves over time leads to different time-varying parameter
models:
(i) Models with multiple, discrete breaks. Models with multiple, discrete structural

breaks are such that:
Btzﬁl'l(t<7—1)+62'1(7—1§t<7—2)+~-~+ﬁK'1(7—K—1§t<7-K)+BK+1'1<7-K§t)7

where 3, # By # ... # Bg.1; K is the number of breaks, which give rise to K + 1 regimes.
Typically, except in very special circumstances, the time of the breaks (71, ..., 7x) are un-
known. One could assume, for example, that each regime is completely unpredictable based
on the information in the previous regimes and, in the attempt of forecasting based only on
the information available in the most recent regime, discard all data prior to time 7. Pe-
saran and Timmermann (2002) propose a Reversed Ordered Cusum (ROC) test, among other
procedures. Although the ROC test estimates one break (the most recent one), nevertheless
it is robust to the existence of multiple breaks since, in that case, it would focus on the most
relevant break for forecasting purposes. Their procedure works as follows. Consider the linear

. T -1 T
model described by eq. (32), and let 3, . = <T;T+1 > mt_hx;_h> <T;T+1 > mt_hyt) be
t=1 t=r1

the OLS estimate of 3, using only observations from 7 onwards, where 7 =7, 7—1,...;1. T is
a parameter chosen to guarantee that the estimate E,w is meaningful; for example, Pesaran

and Timmermann (2002) recommend T'—7 + 1 to be set around two to three times the num-
-1

~ T -1
ber of parameters in ;. Also, let v, = <yT+h - 5;’7137) (1 + ! <T;T+1 tZ xtSCfg) IT) )

=T

7=71,7—1,...,1. The ROC squared test statistic is:

-1
T T
ROC, = (2@) (Z @j) L s=7,7-1,..,1. (33)

Jj=s Jj=1

The null hypothesis of the ROC squared test is the stability of the Mean Squared Error
of the forecasting model and the test rejects when ROC; r is outside the critical values

provided in Brown et al. (1975).>° As mentioned before, there are two issues with such

35 Critical values depend on both the number of observations T" as well as 7. Interested readers are referred
to Brown et al. (1975).
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procedure: not only the date of the latest break might be unknown and difficult to estimate
precisely in finite samples, but, also, the parameter estimate might be imprecisely estimated
if based only on data from 7 < ¢t < T'. In fact, measures of forecast accuracy such as the
MSFE, which is the sum of the bias squared and the variance, would penalize a forecast
depending on both its bias and its precision. Thus, by including data prior to 75 it might
be possible to improve the precision of the estimate at the cost of a higher bias. The
choice of how many recent observations to use in estimating the parameters of a successful
forecasting model clearly depends on this trade-off between bias and variance. Under special
assumptions, it is possible to determine the optimal number of observations theoretically.
For example, Pesaran and Timmermann (2007) focus on a linear model with exogenous,
normal regressors and normal errors and forecast evaluation based on MSFEs. They show
that the optimal number of observations (optimal in terms of unconditional MSFE) dated
time 7 (or earlier) to be used to estimate 3y, is larger when: (i) the size of the break
is smaller, (ii) 7' — 7x is small; and (iii) the signal to noise ratio is small. Pesaran and
Timmermann (2007) propose methodologies to determine optimally determine how many
most recent observations to include in estimation. Among these, they propose: (i) an optimal
number of observations based on the trade-off discussed above; (ii) cross-validation; and (iii)
weighted forecast combinations. We will overview other methodologies proposed by Pesaran
and Timmermann (2007) in Section 2.3.1.

Pesaran Pettenuzzo and Timmermann (2006) take a completely different approach. The
novelty of their approach is to allow for the possibility of new breaks occurring in the fore-
casting period, whose properties depend on the size and duration of past breaks: if a break
has happened in the past, they argue, it is also likely to happen in the future. Thus, it is
important, for forecasting purposes, not only to identify past breaks, but be able to model
the stochastic process that underlies the breaks so that the breaks themselves can be fore-
casted. To be concrete, their model is as follows: the data are drawn from several regimes,
indexed by a state variable s; = 1,2, ..., K + 1, so that the sample of data, {yt}le is drawn
from the distribution f (y:|y;—1, ..., y1; 55), where (3 is the parameter vector in regime s. The
probability of moving from regime s — 1 to regime s is governed by a discrete first order
Markov process with probability p,_1 s, which is drawn from a known distribution with un-
known parameters, for example a Beta distribution. The prior on the parameters of the
Beta distribution are chosen to reflect prior beliefs about the mean duration of each regime.
Finally, the parameters in each state, 3, are drawn from a common distribution, for exam-

ple a Normal distribution. This assumption allows Pesaran Pettenuzzo and Timmermann
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(2006) to forecast the time series outside the estimation sample even if there are possible
breaks in the out-of-sample period.

Pesaran Pettenuzzo and Timmermann (2006) assume a constant transition probability
and a fixed number of regimes. Koop and Potter (2007) extend their framework to allow for
regime changes where the number of regimes and their duration is unknown and unrestricted,
and both the duration and the parameters in a future regime are allowed to depend on
durations and parameters in a previous regime. They argue that these features are especially
useful for forecasting, since breaks may occur out-of-sample: in their model, a new break can
be forecast after the end of the sample and the size of the break depends on the properties
of the previous regime, the history of previous breaks as well as a random element.

Another possibility is to estimate the parameters by using regime-switching models
(Hamilton, 1988). Note how Pesaran, Pettenuzzo and Timmermann (2006) and Koop and
Potter (2007) are different from regime-switching models: the latter are a special case when
the parameters after a break are drawn from a discrete distribution with a finite number
of states. If the states are not recurring, a standard regime-switching model will be mis-
specified and its parameter estimates will be inconsistent. In other words, regime-switching
models assume that there is a finite number of states, and in the presence of regime changes
the time series will always take value in each of these regimes (stationarity assumption).
This is a very restrictive assumption for forecasting, and in fact regime-switching model do
not seem very successful at forecasting: see Clements et al. (2004) for a review of the litera-
ture. Pesaran and Timmermann (2006) and Koop and Potter (2007) are also very different
from in-sample models with multiple breaks (e.g. Bai and Perron, 1998), whose approach al-
lows for multiple breaks but only for in-sample estimation and does not consider forecasting
out-of-sample.

(ii) Models with time-varying parameters. There are several parametric specifi-
cations for models with time-varying parameters. For example, specifications may involve

random walk parameters, such as:

By =Bi1t+e",

or parameters that follow autoregressive specifications, such as time-varying autoregressive
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models:3°
Ps
By = Zl Pjﬁt—j + e
‘7:

All these approaches attempt to strike a balance between the desire of having parameters
with a break at each point in time and the necessity of describing the time evolution of the
parameters parsimoniously, which is clearly crucial for forecasting since parameter prolifer-
ation and the resulting imprecision of the parameter estimates penalizes forecasts, at least
according to the typical MSFE loss function. Thus, these approaches describe breaks at
each point in time using a smooth, parametric function that depends on a small number
of parameters, for example the variance of £/ in the former, and the p;’s as well as the
variance of €/ in the latter. Clearly, there are many choices of parametric functions for the
evolution of the parameters.

One method that has been quite successful at forecasting in practice is the Unobserved
Components Stochastic Volatility model proposed by Stock and Watson (2007). Their (uni-

variate) model is as follows:

vy = &tel (34)
ft = gt—l—’_gfa

where & ~ iidN (0,0%,), &f ~ iidN (0,02,), In(02,) = In (02, ) + ¥, In(0,) =
In (02, 1) + e, and (¢, ,,¢,) ~ @dN (0,I). The model is estimated by Markov chain
Monte Carlo, and the forecast of g, is the filtered estimate of ; obtained by using only
information available up to time t. Stock and Watson (2007) show that this model provides
quite accurate inflation forecasts in the U.S.%"

An alternative approach to model breaks due to level shifts which avoids imposing discrete
regime changes is the nonlinear stochastic permanent break (stop-break) model considered
by Engle and Smith (1999). Assuming h = 1, the model is such that:

Yirr = Byt e (35)
51: = Bt—l‘f'tht

36The latter may be generalized to the joint estimation of several variables in Vector Autoregressive models.

The latter are typically estimated by Bayesian methods due to the computational difficulties in small samples

arising in the estimation from imposing the structure of the time variation.
37 Alternative approaches to proxy a slowly evolving inflation rate include the simple exponential smoothing

method by Cogley (2002) and the autoregressive model with a shifting mean which evolves smoothly over
time according to an exponential function, proposed by Gonzales, Hubrich and Terasvirta (2011), which can

also be adapted to include exogenous information.
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where ¢; is a martingale and ¢; is a random variable bounded between zero and one. When
the realized value of ¢; is one, the realized shock at time t is permanent and y; behaves like
a random walk; when it is zero the shock is transitory and the conditional mean forecast is
constant. By allowing ¢; to vary between zero and one, the model builds a bridge between
the constant mean forecast and the random walk.

(iii) Automatic model selection, impulse-indicator saturation and intercept
corrections. An alternative set of methodologies for forecasting structural breaks is re-
viewed in Castle, Fawcett and Hendry (2011). They note that structural breaks resulting
in location (mean) shifts are one of the major causes of forecast failure, as discussed in
Clements and Hendry (1998, 2002 and 2006), whereas shifts on variables that have mean
zero have smaller impact on forecasts (Hendry, 2000). Thus, their chapter focuses on fore-
casting breaks. Castle, Fawcett and Hendry (2011) note that predicting a break depends
on whether it is possible to identify in advance the causes of such break; they argue that
typically breaks are predictable although the lead time might be too short to be exploited
in practice. For example, the financial crisis in 2007-2009 was not completely unpredictable:
data on sub-prime loans and banks’ leverage were signalling relevant information and The
Economist had foreseen the possibility of a crisis well in advance; however, the extent of the
off-balance-sheet loans and the policy responses became known only as the crisis unfolded,
and were much more difficult to predict. They distinguish between breaks coming from two
different sources: "regular" sources (i.e. economics) and other sources (i.e. politics, financial
innovation). Their practical recommendation is then to monitor a wide variety of sources
of information, including leading indicators,*® disaggregated data (including news variables
that are available at higher frequency and sectorial data),®® prediction markets data and
improved data at the forecast origin.

While monitoring a wide variety of data sources may provide useful information for fore-
casting, it necessitates methodologies for summarizing that information in practice. Castle,
Fawcett and Hendry (2011, sec. 6) suggest using automatic model selection (Hendry and
Krolzig, 2005, and Doornik, 2008) and impulse-indicator saturation. Other options include

forecast combinations, model averaging and factor models. Automatic model selection se-

38See Marcellino (2009) for a review of the empirical performance of leading indicators in practice.
398ee e.g. Hendry and Hubrich (2011) for forecasting aggregate variables via disaggregate components;

Banbura et al. (2010) for incorporating higher frequency news indicators in forecasting;
Andersen et al. (2001) and Ferraro et al. (2012) provide examples of how using high frequency data

(either news variables or oil price shocks) helps predict exchange rates.
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quentially tests multiple variables using ad-hoc corrections to the critical values to take into
account multiple model selection. Impulse-indicator saturation methods include a dummy
variable for each observation to model possible breaks at each point in time, and then uses
automatic model selection techniques to select the model. See Castle, Fawcett and Hendry
(2011) for an extensive discussion. A further approach to estimation in the presence of insta-
bilities is the intercept correction methodology proposed by Clements and Hendry (1996).
They also discuss why parsimonious models often work better than larger models when
there are breaks/instabilities; why double-differenced type models work well in the presence
of breaks in the mean; when and why it helps to impose long-run (cointegrating) restrictions.
We will not provide a detailed overview of such and related approaches due to space con-
straints and since they have already been covered in the previous volume of the Handbook
series: see Clements and Hendry (2009, Section 7.2) for a thorough discussion of several of
these methodologies.

We conclude this sub-section by reviewing the empirical evidence on the performance
of models with breaks. Several researchers have evaluated the forecasting success of time-
varying parameter models in practice. For example, Canova (2007) studies forecasting in-
flation in the G7 countries using real-time data. He compares the forecasting ability of
univariate and multivariate time-varying autoregressive parameter models, and finds that
time variations in the coefficients helps, but time varying univariate models perform better
than multivariate ones. D’Agostino et al. (2009) use a multivariate time-varying coefficients
VAR model with stochastic volatility, allowing for both changes in the coefficients and in
the volatility, in an attempt to improve inflation forecasts. D’Agostino and Surico (2011)
estimate time-varying VARs for the U.S. and evaluate their predictive ability relative to
a time-varying univariate autoregression benchmark in forecasting inflation using two pre-
dictors: money growth, according to the quantity theory, or output growth, according to a
Phillips curve. They also study whether inflation has become harder to forecast across differ-
ent monetary policy regimes. They find that inflation predictability is the exception rather
than the rule. Also, the forecasts produced by the bivariate model in inflation and money
growth are significantly more accurate than the autoregressive forecasts only between WWII
in 1939 and the Treasury-Federal Reserve accord in 1951. Output growth had predictive
power for inflation in only two periods: between the great inflation of the 1970s to the early
1980s and between 1997 and 2000. Otherwise, under the gold standard, the Bretton Woods
system and most of the great moderation sample, money growth and output growth had no

marginal predictive power for inflation. Smith (2005) shows that the stop-break model (eq.
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35) outperforms other nonlinear models in forecasting inflation out-of-sample. Bauwens,
Korobilis and Rombouts (2011) compare the forecasting performance of several of the mod-
els we discussed in an extensive empirical analysis. In particular, the models they consider
are Pesaran, Pettenuzzo, and Timmermann (2006), Koop and Potter (2007), D’Agostino et
al. (2009), Stock and Watson’s (2007) UCSV model as well as recursive and rolling OLS.
Forecasting ability is judged by MSFEs as well as average predictive likelihood’ in fore-
casting 23 univariate, quarterly U.S. macroeconomic time series from 1959 to 2010 following
Stock and Watson (1996). Their empirical analysis finds extensive presence of structural
breaks: at least three quarters of their series do have at least one structural break. They
find that no single forecasting model stands out: in several instances, modeling the break
process performs the best (in 83 percent of all series according to the RMSE criterion, and
in 22 percent of all series according to the average predictive likelihood criterion), whereas
in others rolling OLS forecasts performs the best, although the gains in terms of MSFEs are
small. When the forecasting exercise starts at the beginning of the great recession (dated
2007), Pesaran, Pettenuzzo and Timmermann’s (2006) method seem to perform very well.
Finally, Guidolin and Timmermann (2007) use Markov-switching models to account for the

presence of regimes in asset returns and show that they forecast well out-of-sample.

2.3.3 If There Are Instabilities, Do Forecast Combinations Help?

Since the seminal papers of Bates and Granger (1969), Granger and Newbold (1973), Diebold
and Pauly (1987) and Hendry and Clements (2004), researchers have recognized the useful-
ness of forecast combinations in the presence of instabilities, and structural breaks are often
cited as motivation for combining forecasts from different models. As noted in Timmermann
(2006), the underlying idea is that models may differ in how they adapt to breaks: some
models may adapt quickly, while others may only adjust very slowly. Thus, when breaks
are small and recent, models with constant parameters may forecast more accurately than
models that allow for time variation, and the converse is true in the presence of large breaks
well in the past. Since detecting breaks is difficult in real time, it is possible that, across
periods with varying degrees of instability, combining forecasts from models with different
degrees of adaptability outperforms forecasts from each of the individual models. A similar
reason why forecast combinations may work so well in practice is provided by Hendry and
Clements (2002). In Hendry and Clements (2002), forecast breakdowns arise from shifts in

40The predictive likelihood is the predictive density evaluated at the actual (observed) value.
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the mean of omitted variables, which result in unpredictable breaks in the intercept. How-
ever, by averaging forecasts over several regressions, breaks in the intercepts average out
and the forecast combination is more robust to structural shifts than any of the individual
regressions, provided that the intercept shifts are sufficiently uncorrelated across the differ-
ent regressions. Stock and Watson (2008) argue that, in factor models, it is plausible that
a similar argument could hold. In particular, even though factor loadings may be unstable,
using many series to estimate the factors could average out instabilities as long as they are
sufficiently independent across series. Then, factors might be precisely estimated even in
the presence of instabilities in the individual relationships between the observable and the
factors.

(i) Simple forecast combinations. Forecast combinations are obtained as follows: let
ytf it be the forecast made at time ¢ for horizon A using model "i", where ¢ = 1,..., N. The

equal weight forecast combination is:*

COMB S
Yenlt Z Wi Zyt+h|t ;i) (36)

where w;; = 1/N. More generally, forecasts can be combined with unequal and possibly time-
varying weights, wy.;, which typically sum to unity.*> In particular, Diebold and Pauly (1987)
argued that forecast combination can greatly reduce forecast errors of models in the presence
of a structural change. They considered rolling weighted least squares as well as time-varying
parameter models as generalizations of equal weight forecast combinations: time-varying
weights (which might, for example, be a function of time) might help in improving forecasts
in the presence of instabilities. They showed, via numerical examples, that the improvement
in forecasting ability can be substantial.

Several papers conjectured that the existence of instabilities could be a possible expla-
nation behind the empirical success of forecast combinations in practice. Min and Zellner
(1993) use forecast combination as a way to deal with heterogeneity arising from structural
change. They propose a Bayesian approach to combine a constant linear regression model
with a model with random walk time variation in the parameters. Hendry and Clements

(2002) have shown, via Monte Carlo simulation exercises, that forecast combinations may

41When researchers are concerned about making equal weight forecast combinations robust to outliers,
they implement a trimming. For example, in a 10 percent trimming, all forecasts generated at time ¢ are
ordered; then the 5 percent highest and the lowest 5 percent forecasts are discarded, and the remaining
forecasts are combined with equal weights. See Stock and Watson (1999).

42That is, % Zf\il wyy; = 1 for every t.
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work well if there are intercept shifts in the data generating process. Aiolfi, Capistran and
Timmermann (2010) also derive conditions under which, in a model with time-varying fac-
tor loadings, forecast combinations would provide more accurate forecasts than a model that
uses either one of the two factors alone.

(ii) Ridge regression and inverse MSFE weights. A series of papers have pro-
posed modifications of traditional forecast combination methods to improve forecasting abil-
ity in the presence of instabilities. Bates and Granger (1969) propose ridge regression
method. That is, at each point in time forecasts are combined based on their historical
performance in real time, that is, by comparing forecasts to the actual real time realiza-
tions in a previous sub-sample, and sl,qrinking it towards equal weights. For example, let
Ytih“ = yf+h|t;1,...,yf+h|t;i,...,nyrh't;N} . The weight vector, W = [We1, ..., Wiy ooy Wen| 5 18

obtained as follows:

—1
e (czN s ﬂimﬁ?i’m) < w4 Y xgihltyt+h) G37)
t t

where Iy is a (N x N) identity matrix, ¢ = k- tr (N*1 > Y;ih‘thfr/h'J , where k is the
shrinkage coefficient (typical values of k are .001, .25 or 1), and ¢y is a (N X 1) vector of
ones. Note that >, can be either > 7, or > [ depending on whether researchers prefer
a recursive or a rolling estimate of the combination regression. A special case is k = 0 in eq.
(37), which leads to weighting each of the models by the inverse MSFE relative to the sum
of the inverse MSFEs of the other models.*> Alternative weight choices include predictive
least squares (also known as the lowest historical MSFE method), which involves setting a
weight equal to one to the model with the lowest historical MSFE and zero weight to the
other models. Aiolfi and Timmermann (2006) propose to equally weighting only the forecasts
with historical MSFEs in the lowest quartile of the MSFE distribution or incorporating a
measure of the forecast performance by sorting forecasts into clusters based on their previous
performance. The latter allows researchers to take into account the possibility that some
models may be consistently better than others, and therefore that the good predictive ability
of some models might be persistent over time.

(iii) Discounted MSFE. Another popular weighting scheme is the discounted MSFE
method (see Diebold and Pauly, 1987); this method involves weighting forecasts by:

43This would correspond to the optimal weight when the forecast errors are uncorrelated across models.
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where L(‘j)<yt+h,/€\j7t’R> was defined above eq. (8) for j = 1,2, and here j = 1,.., N; s¢ is the

Wi =

)

initial time used to calculate the weights; and ¢ is the discount factor, e.g. 6 = 1 corresponds
to Bates and Granger (1969) optimal weighting scheme when forecasts are uncorrelated
across models. Other values of § used by e.g. Stock and Watson (2004) are 6 = 0.95
and 0.9. See Stock and Watson (2004) and Clark and McCracken (2006) for other forecast
combination weighting schemes.

(iv) Regime switching weights. Elliott and Timmermann (2005) propose forecast
combinations where the combination weights are driven by regime switching in a latent
state variable. The idea is that in relatively turbulent times one might want to put more
weight on highly adaptive forecasts, whereas one may want to put more weight on stable
forecasting models in relatively tranquil times. More in detail, Elliott and Timmermann
(2005) consider a model where the joint distribution of the target variable and the vector of

forecasts is conditionally Gaussian and driven by a latent state variable Sy, € (1,2, ..., k):

2 I
( Yi+n ~ N M975t+h O-y,stJrh O-Z,I7Yf75t+h
f ’ 2 ’
Yt+h|t Hy fosen TyY fisten Y fsepn

and the unobservable state vector is generated by a first-order Markov chain with a transition
probability matrix. They show that the proposed regime switching combination approach
works well for a variety of macroeconomic variables in combining forecasts from survey
data and time series models. Their Monte Carlo simulations show that time variation in
the combination weights arises when the predictors and the target variable share a common
factor structure driven by a hidden Markov process. See the detailed review by Timmermann
(2006) for details on these and other methods for forecast combination.

The empirical evidence suggests that forecast combinations with equal weights perform
the best in practice. Stock and Watson (2001) find that forecasts based on individual predic-
tors tend to be very unstable over time whereas combinations tend to have better and more
stable performance than the forecasts of the individual models that enter the combinations.
They note that their finding is difficult to reconcile with the theory of forecast combinations
in stationary environments. Stock and Watson (2003, 2004) note that forecast combinations
with time-varying weights do not perform well in practice. On the other hand, Timmermann

(2006) and Pesaran and Timmermann (2007) find that forecast combinations in models with
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varying degrees of adaptability to structural breaks at unknown times are better than fore-
casts from individual models. Clark and McCracken (2008) focus on forecasting with VARs
in the presence of structural breaks. They show that simple equal weighted forecast combi-
nations are consistently the best performers. It is also clear that forecast combinations are
capable of predicting the equity premium better than the historical average, as shown by
Rapach, Strauss and Zhou (2010), who argue that the success of forecast combinations is due
to the presence of both instabilities and model uncertainty. Typically, forecast combinations
are useful when researchers have available a large number of possible regressors, and esti-
mating a joint model with all the regressors would lead to a very high parameter estimation
error, which would penalize out-of-sample forecasts: in that case, researchers may combine
forecasts obtained using each of the regressors, one at a time (e.g. Stock and Watson, 2003);
note however that an alternative way of combining information based on a large number
of different regressors is to use factor models (for brevity, we refer the reader to Stock and
Watson, 2006, for a treatment of factor models). Aiolfi, Capistran and Timmermann (2010)
also show that equal weighted forecast combinations of survey data outperform model-based
forecasts from linear and non-linear univariate specifications as well as multivariate factor-
augmented models for many macroeconomic variables and forecast horizons. They show
that model instabilities are really important for explaining the gains due to forecast com-
binations. Occasionally, equal weighted forecast combinations of survey and model-based
forecasts result in additional forecast improvements. Stock and Watson (2004) find that,
in a seven countries database with a large number of predictors, the forecast combinations
that perform the best are the ones with the least data adaptivity in their weighting schemes,
such as equal weights. Note that the efficacy of equal weighted forecast combinations may
depends on how the set of models is selected. Including several models that forecast very
poorly might negatively affect the performance of forecast combinations. As shown in Mazzi
et al. (2010) among others, if one uses some trimming to exclude models that forecast very
poorly prior to taking the combination, equal weighted combinations are again effective. The
recent and very detailed survey in Timmermann (2006, Section 4) discusses the usefulness
of forecast combination as a hedge against model instability; in general, the main findings in
Timmermann (2006) confirm that equal weighted forecast combinations outperform forecast

combinations with time-varying weights.**

#4There are exceptions, though. Ravazzolo, Verbeek and van Dijk (2007) provide one of the very few
examples where models with time-varying weight schemes may forecast well when the data generating process

has structural breaks. Their empirical application to forecasting returns of the S&P 500 index shows that
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(v) Bayesian Model Averaging (BMA). BMA is an alternative method to implement
forecast combinations with time-varying weights, implemented by estimating the weights by
Bayesian methods. BMA techniques work as follows. They consider many possible models
together with prior beliefs on the probability that each model is true. Then they compute
the posterior probability that each model is the true one. Finally, they average the forecasts
of the various models by using these posterior probabilities as weights. Thus, BMA are
effectively forecast combinations, the only difference being that the weights are estimated
by posterior probabilities. More formally, following Wright (2009), let the researcher prior
belief about the probability that the true model is the i-th model be P (M;), i = 1,..., N.
Also, let the posterior probability that the i-th model is the true model given the data D be:

P (DIM,) P (M)

P (Mi[D) = ,
S P (DIM,) P (M)

where P (D|M j> is the marginal likelihood of the j-th model. The marginal likelihood could
be obtained by AIC or BIC, see e.g. Koop, Potter and Strachan (2008), Garratt, Koop and
Vahey (2008) and Clark and McCracken (2006); the latter, for example, set P (D|/\/l j)
to be the information criterion times —0.5 times the estimation sample size. Typically,
P(M;) = 1/N. The BMA forecast then weights each models’ forecast by the posterior
probability of the model:

N
yﬁ%?’f = Z P (M;|D) y{—s—h\t;i (38)
i—1

Several papers suggest that BMA forecasts are very competitive in practice. Wright
(2008) finds that BMA is quite useful for predicting exchange rates out-of-sample. In par-
ticular, BMA forecasts perform quite well relative to a driftless random walk, which is the
toughest benchmark to beat in the exchange rate literature. Wright (2008) finds that, in
most cases, BMA forecasts with a high degree of shrinkage have lower MSFEs than the
random walk benchmark, although BMA forecasts are very close to those from the random
walk forecast in magnitude. Wright (2009) finds that BMA provides better out-of-sample

forecasts of U.S. inflation than equal weight forecast averaging. This superior performance is

time-varying weights might improve gains from investment strategies in the presence of transaction costs.
Altavilla and Ciccarelli (2007) use the information contained in the revision history of inflation and GDP
growth to improve the forecast accuracy of the models. They propose forecast combinations using weights
that reflect both the relative ability that each model has at different points in time as well as different
vintages to capture information on the revision process and improve forecasting performance, both in terms

of precision and stability.
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robust across sub-samples (before and after 1987), thus showing robustness to the possibility
of forecast instabilities. Clark and McCracken (2010) provide empirical evidence on whether
various forms of forecast averaging can improve real-time forecasts of small-scale VARs in the
presence of instabilities (see Kozicki and Tinsley, 2001, Cogley and Sargent, 2005, Boivin and
Giannoni, 2006, and Inoue and Rossi, 2011, among others, for empirical evidence of instabil-
ities in VARs). The VARs that they consider include inflation, output and the interest rate.
They consider BMA as well as alternative approaches to forecast averaging, such as equally
weighted averages and MSFE-weighted averages as well as a large variety of methods robust
to model instability, including different estimation window sizes, intercept corrections, allow-
ing discrete breaks in parameters identified with break tests, and discounted least squares,
BMA, among others. They show that the simplest forms of model averaging (such as equal
weighted forecasts) consistently perform among the very best, whereas MSFE-weighted av-
erages and factor models perform the worst. BMA’s forecasts with high shrinkage perform
well relative to VARs’ and BVAR’s forecasts, although not as well nor as consistently as
simple equal weight forecast combinations.

A Monte Carlo analysis of the effects of parameter breaks on out-of-sample forecasting
performance in BMAs is considered by Eklund and Karlsson (2005). They consider a Monte
Carlo experiment where the parameter of one of the predictors is either constant or changes
sign either at the beginning, in the middle, or towards the end of the data. When the pa-
rameters are constant, the true model is among the set of models to be estimated, whereas
in the latter case, the true model is not. They compare the out-of-sample forecasting per-
formance of typical BMA (whose weights depend on the posterior probabilities based on the
marginal likelihood) with the performance of BMA models where the weights depend the
posterior predictive density ("BMA with predictive likelihood"). The posterior predictive
density is the density calculated in the out-of-sample portion of the data, that is observations
R+1,...,T (the"hold-out sample", based on P = T — R observations), using parameters es-
timated on data from 1 to, say, R ("training sample"). Differences between the performance
of the typical BMA and the BMA with predictive likelihood suggest that the typical BMA
may not be informative about the out-of-sample behavior. They show that results based on
the typical BMA are very similar to those based on the BMA with predictive likelihood in
the absence of a break, as long as P is large enough. However, in the presence of a break, the
typical BMA fails to approximate the BMA with predictive likelihood: when the break is
in the middle of the sample, the predictive likelihood performs significantly better provided

the out-of-sample period is large enough. When the break is towards the end of the sample,
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the typical BMA always performs worse than the BMA with predictive likelihood. These
results mirror the discussion in Section 2.3.1. In fact, when the true model is among the
choice set, the predictive likelihood will select the true model asymptotically, although at a
slower rate than the marginal likelihood since it relies on fewer observations; the two will
perform similarly only when the sample size is large enough. When the true model is not
among the choice set, the predictive likelihood will guard against over-fitting whereas the
marginal likelihood will overfit.

Several new papers attempt to simultaneously address structural change and model cer-
tainty using a BMA approach. In particular, Ravazzolo, Paap, van Dijk and Franses (2007)
allow for breaks of random magnitude in the parameters of forecasting regressions as well
as uncertainty about the inclusion of models’ predictors in their BMA framework. They
attempt to predict U.S. excess stock returns using both macroeconomic and financial pre-
dictors. They find several breaks, which they relate to events such as oil crises, monetary
policy changes, the 1987 stock market crash and the internet bubble. On the one hand,
incorporating uncertainty on breaks and on the predictors does not lead to significant fore-
cast improvements relative to linear models or traditional BMA; on the other hand, typical
investors would be willing to pay several hundred basis points to switch to a strategy based
on their forecasting model. Similarly, Groen, Paap and Ravazzolo (2009) propose a Phillips
curve model for forecasting inflation by averaging across different model specifications se-
lected from a set of potential predictors (lagged inflation, real activity data, term structure
data, nominal data and surveys), where each of the models’ specifications allow for stochastic
breaks in regression parameters. The breaks are occasional random shocks. Like Ravazzolo,
Paap, van Dijk, and Franses (2007), they find breaks that coincide with monetary policy
regime changes or oil crises, and only little evidence of breaks in the variances or persistence.
Koop and Korobilis (2009) propose a BMA where both the coefficient values as well as the
entire forecast model can change over time (for example, a predictor might be useful during
recessions but not in expansions). The advantage relative to Groen, Paap and Ravazzolo
(2009) is that it can handle many more predictors.

In a more recent contribution, Pesaran, Schuermann and Smith (2009) propose to average
forecasts not only across window sizes, as in Pesaran and Timmermann (2007), but also
across models. They propose an "AveAve" approach where several models’ forecasts are first
averaged according to a Bayesian model averaging technique for a given window size, and then
the procedure is repeated over several window sizes and their forecasts are averaged further.

They show that the "AveAve" technique performs favorably in forecasting output growth
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and inflation across several countries relative to a simple equal weight forecast combination
across window sizes and relative to an equal weight forecast combination across predictors

(i.e. models).

2.3.4 Instabilities and Density Forecasts

So far, the discussion focused on conditional mean forecasting. To conclude, we discuss a few
additional, related empirical results regarding density forecasts, including a brief overview
of recent contributions in time-varying volatility forecasting for macroeconomics data.*?

Regarding estimation of density forecasts in the presence of instabilities, researchers have
proposed to use either forecast density combinations or to model the instabilities paramet-
rically. Bayesian Model Averaging can be used to obtain forecast density combinations. For
example, letting f;;,; denote the forecast density of model 4,7 = 1,.., N, the BMA forecast
density combination is: N

FEE = Y P (MAlD) feonpes (39)
i=1
where P (M;|D) has been defined above eq. (38).

Hall and Mitchell (2007) discuss techniques to combine density forecasts. Their applica-
tion to U.K. inflation density forecasts suggests that combining information across density
forecasts can generate forecast improvements, a result similar to the forecast combination
literature on point forecasts. They also discuss the estimation of the combination weights,
although not in the presence of instabilities; see also Geweke and Amisano (2011). Jore,
Mitchell and Vahey (2010) study the usefulness of combining forecast densities using many
VARs and autoregressive models of output growth, inflation and interest rates. They propose
a recursive-weight density combination strategy, based on the recursive logarithmic score of
the forecast densities. They show that neither full-sample univariate combinations nor equal-
weight combinations produce accurate real-time forecast densities for the Great Moderation
period due to the existence of a structural break at the time of the Great Moderation. Their
proposed recursive-weight density combination strategy gives competitive forecast densities
by assigning a higher weight on rolling and break components that allow for the shifts in
volatilities. Mazzi, Mitchell and Montana (2010) nowcast FEuro-area output growth over
the 2008-9 recession using density forecast combinations and economic indicators available

at higher frequencies. They note that during the recent recession the relative forecasting

45For an extensive overview of volatility forecasting, in particular for financial variables, see Andersen et
al. (2009).
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performance of the models they consider changed abruptly. Billio et al. (2012) combine
predictive densities using multivariate time-varying weights, where the weight dynamics is
driven by the past performance of the predictive densities using learning mechanisms. The
latter helps in identifying structural changes like the Great Moderation. An alternative to
forecast density combinations is the estimation of models with time-varying parameters. For
example, Clark (2011) focuses on density forecasts of U.S. GDP growth, unemployment,
inflation and the interest rate in a Bayesian VAR with stochastic volatility, to better capture
the decrease in volatility during the Great Moderation period. He demonstrates that adding
stocastic volatility helps improving the real-time accuracy of density forecasts. Carriero,
Clark and Marcellino (2012) extend the analysis to large VARs where the volatilities are
driven by a single common factor and Koop and Korobilis (2012) propose new methods
to estimate large dimensional VARs with time-varying parameters (including time-varying
volatilities), where the models’s dimension can change over time. Bache et al. (2011) consider
how the density forecasting performance of a DSGE model with time-invariant parameters
can be improved via combination with many VAR-based densities. They find that, although
the DSGE models produce competitive point forecasts, their predictive densities are poorly
calibrated. Densities become well calibrated only after merging the DSGE model with VARs
allowing for breaks, although in this case the DSGE component receives little weight. Again,
these results point to the importance of instabilities in practice. When combining density
forecasts of the DSGE and the VARs with constant parameters, instead, the DSGE receives
a larger weight, but only at horizons in which the predictive densities are mis-specified.?S
Potentially interesting alternative avenues for future research may include non-linear (loga-
rithmic) combinations (e.g Kascha and Ravazzolo, 2010, although they don’t focus on density
forecasting and instabilities) and maximizing the forecasting performance not of the whole
density, but on some regions of economic interest which might be more robust to instabilities.
Regarding forecast density evaluation in the presence of instabilities, researchers might be

interested in evaluating either the relative performance of density forecasts or the correct

46 An interesting question is whether structural/economic restrictions and/or statistically motivated re-
strictions on the forecasting model might improve forecasts in the presence of instabilities. On the one hand,
it might be possible that economic restrictions may render the forecasting model robust to the Lucas’ critique
since, if the parameters are "deep", they might be less subject to instabilities than reduced-form models. On
the other hand, it might be possible that such restrictions may be invalid in the data, thus generating a mis-
specified model whose forecasts may be less robust to instabilities. It might be possible that, by restricting
the parameter space, there is less estimation error when parameters do shift, provided they remain within

the parameter space (e.g. priors might improve forecasting performance, as in the Bayesian VAR literature).
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specification of the density forecast of a selected model. Regarding the former, Manzana and
Zerom (2009) focus on forecasting the distribution of inflation rather than its mean. They
consider commonly used macroeconomic indicators and find that some indicators, such as
the unemployment rate and housing starts, significantly improve forecasts of the distribu-
tion of core CPI inflation.’” Regarding the latter, Rossi and Sekhposyan (2012b) empirically
evaluate the correct specification of density forecasts of output growth and inflation based
on a normal approximation in a large database of predictors similar to that considered in

the empirical application in this Chapter.*®

2.3.5 Summary of Findings

Overall, instabilities are a practical and serious concern for forecasters interested in eval-
uating predictive ability. Traditional forecast evaluation methods are inconsistent in the
presence of instabilities. However, several alternative, robust procedures have been pro-
posed. To determine Granger-causality, researchers might use Granger-causality tests ro-
bust to instabilities (Rossi, 2005); to assess which model forecasts the best, researchers can
use Giacomini and Rossi’s (2010a) Fluctuation and One-time reversal tests; to determine
whether forecasts are rational, unbiased and/or optimal, researchers can rely on Rossi and
Sekhposyan’s (2011b) Fluctuation optimality tests. It is also possible to improve models’ es-
timation in the presence of instabilities by either estimating historic breaks or by combining
forecasts. The empirical evidence in the literature suggests that forecast combinations with
equal weights provide the largest improvements in forecasting. Possible explanations of why
forecast combinations may work well include finite sample error in the weights estimates
(see Smith and Wallis, 2009) and different degrees of mis-specifications in the forecasting
models, as determined by instabilities (see Hendry and Clements, 2004). BMA also performs
quite well, whereas forecast combinations with time-varying weights do not perform as well.
In addition, either averaging across window sizes or evaluating forecasting ability in a way
robust to the choice of the window size usually improves the empirical evidence in favor of

models’ predictive ability.

47T Amisano and Giacomini (2007) and Diks, Panchenkob and van Dijk (2011) are recent works that propose

methodologies to evaluate the relative performance of density forecasts in stable environments.
4Diebold, Gunther and Tay (1998) and Corradi and Swanson (2006a) propose methodologies for evaluating

the correct specification of density forecasts in stable environments — see Corradi and Swanson (2006b) for
an excellent review. Rossi and Sekhposyan (2012a) propose tests to evaluate the correct specification of

density forecasts in the presence of instabilities.
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3 What is the Relationship Between In-sample and
Out-of-sample Forecasting Ability in the Presence

of Instabilities?

This section analyzes the relationship between models’ in-sample fit and their out-of-sample
forecasting performance in the presence of instabilities. First, we discuss the empirical
evidence. Overall, the main message from the literature is that in-sample tests do not provide
reliable guidance to out-of-sample forecasting ability. Then, we analyze the relationship
between in-sample fit and out-of-sample forecasting ability. The difference between the two
may be explained by structural breaks, overfitting, and different small sample properties of
the estimates. We provide an overview of techniques that allow researchers to formally test
whether in-sample fit provides enough guidance to out-of-sample forecasting performance via
forecast breakdown tests (Clements and Hendry, 1998, 1999, and Giacomini and Rossi, 2009).
When such tests reject, it is important to know why the in-sample fit is different from the
out-of-sample forecasting performance, and we provide methods to empirically answer this
question (Rossi and Sekhposyan, 2011a). Finally, Section 4 provides an empirical analysis
of the presence of forecast breakdowns and their explanations in an empirical application to

forecasting inflation and output growth using a large database of time series predictors.

3.1 Does In-sample Fit Provide Good Guidance to Out-of-Sample
Forecasting Ability? The Empirical Evidence.

One area where researchers have explored whether in-sample fit provides guidance for out-
of-sample forecasting ability is in predicting stock returns. Campbell (1987), Campbell and
Shiller (1988), Bekaert and Hodrick (1992), Fama and French (1988), Perez-Quiros and Tim-
mermann (2000) and Pesaran and Timmermann (1995) have found in-sample predictability
in stock returns. However, more recent studies have documented that, although there is pre-
dictability in-sample, the true out-of-sample forecasting ability is much weaker: Bossaerts
and Hillion (1999) find that stock returns on a variety of U.S. and international portfolios
were unpredictable out-of-sample during the 1990s; Cooper, Gutierrez and Marcum (2005)
find that relative returns on portfolios of stocks sorted on firm size, book-to-market value and
past returns were not predictable out-of-sample during the period 1974-1997. Marquering
and Veerbeek (2004) found that the trading strategies they study had predictive power only
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in the first half of the sample period they consider. Similarly, Sullivan, Timmermann and
White (1999) find that the trading strategies they study were profitable before 1986 but not
afterwards. Paye and Timmermann (2006) formally test for instabilities in return prediction
models and find widespread instabilities. See also Goyal and Welch (2003) and Ang and
Bekaert (2004).

A second area where in-sample fit does not provide reliable guidance for out-of-sample
forecasting ability is when predicting exchange rates. Meese and Rogoff (1983a,b) have shown
that, although models of exchange rate determination based on traditional fundamentals fit
well in sample, their forecasting performance is much worse than a simple, a-theoretical
random walk model. More recently, Sarno and Valente (2009) argued that the poor out-of-
sample forecasting ability of exchange rate models may be caused by the poor performance
of in-sample model-selection criteria, rather than by the lack of predictive content of the
fundamentals.

Finally, a third area of interest is predicting output growth. Swanson (1998) shows that
models with statistically significant in-sample monetary aggregates are not guaranteed to
outperform simpler models out-of-sample. Furthermore, Swanson and White (1997) show
that model selection based on the BIC fails to result in improved out-of-sample performance
for several linear and non-linear models when predicting nine key macroeconomic variables.
Giacomini and Rossi (2006) focus on predicting U.S. GDP using the U.S. yield curve. They
also found significant failure of measures of in-sample fit for predicting GDP growth out-of-

sample, and relate this failure to changes in monetary policy regimes.

3.2 The Theoretical Relationship Between Out-of-Sample Fore-

casts and In-sample Fit

The presence of model instability and/or overfitting might explain some of the differences
between models’ in-sample fit and out-of-sample forecasting ability. In fact, one important
advantage of evaluating models on the basis of their out-of-sample forecasting ability is that
out-of-sample procedures have power against structural breaks because they re-estimate their
parameters over time by either rolling or recursive window estimation schemes. Clark and
McCracken (2005) undertake an analytic investigation of the effects of structural breaks on
parameters in tests of equal out-of-sample predictive ability and encompassing, as well as
in-sample tests of predictive ability.

In what follows, we present a simplified example based on their results. Let y; = (5, + ¢,
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where g; ~ 1id(0,0?) and t = 1,2,....,T. Let 3, = 0 for t < t* and 3, = 3, for t > t*, and let
t* = [7*T], so that the breaks happens at a fixed fraction of the total sample size, 7* € [0, 1].
Imagine a researcher interested in evaluating Granger-causality, which, in this example,
simply means testing whether the constant is significant or not. The unrestricted model is
a model with a constant, for which the in-sample fitted errors are €5, = y, — T ! Zstl Ys;
the restricted model is a model with a zero mean, for which the in-sample fitted errors are

€14 = ¥t The Granger-causality test, GCr, can be written as:

T
§ 51t 52t
=1

Thus, GCr diverges to positive infinity as long as 5, # 0, and will do so at rate T. However,

GCr =

Zggt] ~ T [B2(1— )] +0, (TY2).  (40)

it will diverge faster the larger is 3, and the larger is (1 — 7'*)2. That is, since 7* is bounded
between 0 and 1, for a given value of f3,, the Granger-causality test statistic will be larger
the smaller the value of 7, that is the earliest in the sample the parameter becomes different
from zero. On the other hand, for a given value of 7", GCr will be largest the bigger 3,
is, that is the more different from zero the constant is (zero is the restricted value of the
parameter).

Now consider Diebold and Mariano’s (1995) and West’s (1996) tests. These tests are
based on the one-step ahead out-of-sample forecast errors of the two models. The value of
their test statistic will depend on when the break happens: whether it happens (a) after the
sample split, or (b) before the sample split. It will also depend on the fraction of the sample
used for forecast evaluation (T'— R = [(1 — () T, using the approximation ¢ = T%Ill (R/T))
and on whether the parameters are re-estimated on rolling or expanding window estimation
schemes. Let the out-of-sample forecast errors of the two models considered above be denoted
by Ui1e = Yepr and Usgip = Ypgr — ¢ 22:1 ys and let the loss function be quadratic.
Clark and McCracken (2005) show that, in the recursive window case and for h = 1, the
DMWp statistic defined in eq. (9) is such that:

-1\7T 2 2
[P Dk (ul,t+1|t - u2,t+1|t>]
. ) ) o1 —1/2°
-1 A~ o~
Py g <“1,t+1\t u2,t+1|t>

ZTBQf[ (s —7*) =57 2(s — 1) ds = TS5 (1 — ), for (a)

DMWp = P

where (41)

T
§ 1 A1 T us t+1\t>

o T62{ 26— = P as =183 [1 - ¢ 2= 2] for (b),

52



and the denominator is O, (Tl/ 2). In both cases, the dominating term in the DMWp test
statistic diverges to positive infinity. However, now the speed depends on P. As in the
case of the GCr test, the value of DMWp is larger the larger is [3,, that is the bigger the
predictive ability in the constant; and it is also larger the smaller 7* in case (a), that is, the
earlier the predictability shows up in the data.

Since both statistics diverge to infinity as the sample size diverges, in large samples both
tests are likely to reject the null hypothesis provided [, # 0. Comparing (40) with (41), it
is clear that the relative power of the two tests depends on the location of the break, 7* and
the fraction of the sample used for estimation purposes, (. We have shown in Section 2.2.1
that there exist situations in which the GC7r test has no power; thus, in such situations,
out-of-sample forecast tests may have better power to select the correct model than in-
sample Granger-causality tests. This argument prompted Rossi (2005) to design in-sample
tests that have power against structural breaks in the parameters, reviewed in Section 2.2.1.
Clark and McCracken (2005) have compared the performance of the GCr and DM Wp tests
with Rossi’s (2005) Exp — W test and shown that the latter is always more powerful when
instabilities take the form of a one-time break. This suggests that, once one has determined
the source of the possible advantage of out-of-sample predictive ability tests relative to in-
sample tests, it may be possible to find an in-sample test that has better power properties.
The latter point was also suggested by Inoue and Kilian (2006). However, out-of-sample
forecast tests have power against a variety of alternatives, as Giacomini and Rossi (2009)
have shown.

Giacomini and Rossi (2009) present a decomposition of the out-of-sample losses into a
series of components that identify possible sources of differences between the out-of-sample
predictive ability of a model relative to what was expected based on its in-sample fit. Their
ultimate goal is to propose a theoretical framework for assessing whether a forecast model es-
timated over one period can provide good forecasts over a subsequent period. They formalize
this idea by defining a forecast breakdown as a situation in which the out-of-sample perfor-
mance of the model, judged by some loss function, is significantly worse than its in-sample
performance. They show that one of the main causes of forecast breakdowns are instabilities
in the data generating process and relate the properties of their forecast breakdown test to
those of traditional structural break tests.

To gain some insight into the causes of forecast breakdowns, Giacomini and Rossi (2009)
analyze the expectation of the difference between the out-of-sample forecast error relative to

the average loss computed over the in-sample period. That is, for a given loss function L (.)
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(for simplicity, we assume that the same loss is used for both estimation and out-of-sample
forecast evaluation) and forecast horizon h, Giacomini and Rossi (2009) propose analyzing

the sequence of P out-of-sample “surprise losses”:
SLt+h :Lt+h—zt, fOrt:R,R+1,...,T, (42)

where L, is the out-of-sample forecast error loss and L, is the in-sample average loss. The

latter depend on the forecasting scheme. Let 3; denote the relevant sample average depend-

t

ing on the forecasting scheme: ¥; = ¢~ Z;Zl for the recursive scheme, ¥; = R71Y" Jmt- R4

for the rolling scheme with window size R, and R™! Zle for the fixed scheme; thus,
Li=>" ;Lj. For example, in the case of a quadratic loss, Ly, is the squared out-of-sample
forecast error of a model, and L; is the in-sample mean squared (fitted) error. They further
define 37 to be such that F (0L, (;) /0F) = 0 and Et to be the in-sample parameter estimate
at time ¢ estimated via either fixed, recursive or rolling estimation scheme, t = 1,2,...,7.
Also, let Et, B;k denote intermediate points between (Bt, B; ), (ﬁ: , 5;‘) , respectively.
Giacomini and Rossi (2009) decompose the expectation of the average surprise losses
over the out-of-sample portion of the data, eq. (42), into components grouped into pa-
rameter instabilities, other instabilities and estimation uncertainty. They define "Forecast

breakdowns" (see Clements and Hendry (1998, 1999) as situations where:

T
E (P—W > SLt+h(Bt)> £ 0.
t=R

Their decomposition in shows that forecast breakdowns can be caused by several factors. To
be concrete, let’s derive the decomposition when there are both breaks in parameters and
breaks in the variance of the errors, for the special case of a linear regression model, a fixed
forecasting scheme and a quadratic loss. Consider the following simplified example, where
L (e) = €2, the forecasting scheme is fixed, and the model is: y;,1 = )3, + €411, Where:
g, = oyuy; the (p x 1) vector z, is i.i.d. with E () = J; 8, = B+ P7V*AB-1(t > R);
02 = 024+ P7Y2A0% - 1(t > R) + pe? ; (Ao? can be negative) and v, is i.i.d.(0,1). This
specification allows for ARCH and two types of structural breaks: a break in the conditional
mean parameters at time R (from (5 to 5+ Af), and a break in the unconditional variance of
the errors at time R (from o2/ (1 — p) to (02 + Ac?) / (1 — p)). Giacomini and Rossi (2009)
show that:

T
~ Ac? 1 P2 52
E| P2y SL = ~ABJA 2 :
( A e O .
t=R ~—— —— —_———
“other instabilities” “parameter instabilities II” “overfitting"
(43)
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First, note from (43) that a forecast breakdown can be caused by a “small” positive
break in the variance of the disturbances and/or a “large” break (positive or negative)
in the conditional mean parameters. However, the presence of ARCH does not cause a
forecast breakdown. Second, expression (43) implies that breaks in parameters and in the
variance of the errors could have opposite effects on the forecast performance, and thus not
necessarily cause a forecast breakdown (e.g., if Ao? < —.5AB'JAB). In other words, there
could be a bias-variance trade-off between breaks in the model’s parameters (which result in
biased forecasts) and breaks in the variance of the errors which does not necessarily result
in a discrepancy between in-sample fit and out-of-sample forecasting performance. Indirect
approaches that jointly test for breaks in conditional mean and variance parameters may
instead detect both breaks and thus incorrectly conclude that the forecast performance of the
model necessarily deteriorates. Finally, under their assumptions, the overfitting component
is present only in finite samples and is proportional to the number of parameters, the variance
of the disturbances and the factor P'/2/R. Giacomini and Rossi (2009) further discuss the
effects of overfitting on the properties of the forecast breakdown test in greater detail and
propose an overfitting-corrected version of their test based on a small sample approximation
where the number of regressors is large relative to the total sample size.

Other additional, important points on the relationship between in-sample fit and out-of-
sample forecasting ability were made by Inoue and Kilian (2004). Inoue and Kilian (2004)
note that there are important cases where strong in-sample evidence and weak out-of-sample
evidence are not necessarily an indication that in-sample tests are not reliable. For example,
in-sample tests rely on a larger sample size than out-of-sample tests (which have to reserve
a portion of the data for out-of-sample forecast validation), so that they may have higher
power. If the data are stationary, Inoue and Kilian’s (2004) explanation implies that we
should discount the results out-of-sample tests when the latter fail to confirm the findings
of predictability using in-sample tests.** Another interesting point that Inoue and Kilian
(2004) make is that it is not necessarily true that out-of-sample tests are more robust to
data mining than in-sample tests: the problem is that out-of-sample tests are not truly

“out-of-sample”, since the researcher is free to experiment with alternative predictors in the

YTnoue and Kilian (2004) also consider the possibility of breaks.
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out-of-sample portion of the data until he finds a significant predictor.?

An interesting question is why there are instabilities in the forecasting performance and
why they might explain the gap between in-sample fit and out-of-sample forecasting ability,
such as that described in eq. (43). Timmermann (2008) provides an intriguing explanation
based on the economic analysis of the stock market. In particular, he argues that forecast-
ers of stock returns face a moving target that changes over time: "just as the forecaster
may think that he has figured out how to predict returns, the dynamics of market prices
will, in all likelihood, have moved on — possibly as a consequence of the forecaster’s own
efforts" (Timmermann, 2008, p. 1). That is, forecasters constantly search across competing
approaches and investment strategies and make use of all available in-sample information.
Once a successful forecast strategy is found, more and more forecasters and investors will
try to exploit it, and it will start to have an impact on prices so that the predictability
effectively gets incorporated in the current price and it disappears. Timmermann (2008)
conjectures that such competition across forecasters and investors generates instabilities in
the models’ out-of-sample forecasting performance. Interestingly, it might then be that the
lack of predictability is not due to the inexistence of predictability, or worse to the lack of
skills of forecasters, but to the fact that predictive opportunities are exploited efficiently:
an example of "post hoc ergo propter hoc". Note that, as a consequence of Timmermann’s
(2008) argument, if the predictability of successful models were based on actual observed
variables whose information was effectively exploited by forecasters, econometrician’s regres-
sions should be able to uncover such relationships; however, successful models might be too
complicated to be captured by econometrician’s simple time series regressions, in part also
due to their instabilities over time."!

Finally, note that the main focus of this Section is on the relationship between in-sample

model’s fit and out-of-sample forecasting ability in the presence of instabilities. For com-

0Tnoue and Kilian (2006) focus instead on the consistent selection of forecasting models based on the
MSFEs, rather than on testing, and show that selecting models based on MSFEs may lead to choosing
over-parameterized models under the assumption that the window size used for estimation is a fixed fraction

of the total sample size.
°1See also Schwert (2003) for a similar argument. He argues that it has been observed that anomalies in

financial markets may disappear after being documented in the literature. This raises the question whether
the disappearance is due to sample selection bias or to the practitioners’ focus on anomalies. In the former
case, there was no anomaly to start with; in the second case, it is possible that the anomaly was identified
by practitioners and then disappeared because practitioners take anomalies into account in their trading

pattern so that profitable transactions vanish.
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pleteness, let us mention two recent papers that focus on the relationship between in-sample
fit and out-of-sample forecasting ability, although they focus on stationary environments.
The first is Hansen (2009). Hansen (2009) derives the joint limiting distribution of in-
sample fit and out-of-sample forecasts at the true, or pseudo-true, parameter values. His
results indicate that for a broad class of loss functions the two are strongly negatively corre-
lated. The consequence of this result is that good in-sample fit leads into poor out-of-sample
fit. In particular, an example in Hansen (2009) shows that, under some simplifying as-
sumptions (e.g. the data are iid Normal and the loss is quadratic), then the in-sample
fitted error (u7,) and the out of sample forecast error (uf,,,,) are jointly distributed as
(ﬂit;ﬁitﬂ‘t) - (Z2,—7Z% + 27,75, where Zy,Z, are iid Normals, independent of each
other. This shows that the source of advantage of models’ in-sample fit (Z?2) is exactly the
same component that penalizes models’ out-of-sample fit.

The second paper is the work by Calhoun (2011). Calhoun (2011) focuses on the asymp-
totic distribution of tests of forecast comparisons in models where the number of predictors
used by the larger model increases with the sample size. Under these assumptions, he shows
that out-of-sample tests can test hypotheses about measures of models’ forecasting perfor-
mance if the fraction of the sample used for out-of-sample evaluation is small. Furthermore,
in-sample tests as well as Clark and McCracken’s (2001, 2005a), McCracken’s (2007) and
Clark and West’s (2006, 2007) tests will choose the larger model too often even if the smaller

model is more accurate.

3.3 How Can Researchers Formally Establish Whether In-sample
Fit is Indicative of Out-of-Sample Forecasting Ability?

Giacomini and Rossi (2009) propose a test to detect and predict forecast breakdowns in a
model. Their notion of a forecast breakdown is a formalization and generalization of what
Clements and Hendry (1998, 1999) called a “forecast failure”, described as a “deterioration in
forecast performance relative to the anticipated outcome” (Clements and Hendry, 1999, p. 1).
Giacomini and Rossi (2009) formalize the definition of a forecast breakdown by comparing the
model’s out-of-sample performance to its in-sample performance using the notion of surprise
losses, S Ly, defined in eq. (42). Their test for predicting forecast breakdowns is obtained
as follows. Consider the sequence of P out-of-sample surprise losses SL;.; and select a
p—dimensional vector of forecast breakdown predictors X; (which can include a constant,

lagged surprise losses, and various predictors such as business cycle leading indicators as well

o7



as economically meaningful variables). Then, estimate the following model:
SLt+h = Qo + allXt + €t+h. (44)

and testing whether ag = a; = 0. When the null hypothesis is rejected, the model expe-
rienced a forecast breakdown, which implies that the model (44) could be used to predict
future forecast breakdowns.??

A special case is the test to detect past forecast breakdown. For simplicity of exposition,
let’s focus on this simple case. In this case, additional regressors X; are not included, so
that the researcher tests whether the surprise losses are zero in expectation. The “forecast
breakdown” test statistic is then: _

SLp

trRPh = =0 (45)
SL

where SLp = P~1/? ZT: SL;.p and 82 1 is the appropriate, consistent estimate of the variance
of the average surprtizg losses provided by Giacomini and Rossi (2009); for example, in the
recursive estimation case, 3?9 ; is simply the HAC variance estimate of the surprise losses.
The test rejects the null hypothesis at the a% confidence level whenever tg p) is greater

than the (1 — ) — th quantile of a standard Normal distribution.”

3.4 How to Empirically Determine Why In-sample Fit Differs
From Out-of-Sample Forecasting Ability?

While the test proposed by Giacomini and Rossi (2009) has power to detect forecast break-
downs, it is not possible to use it to determine what is the source of the forecast break-
down. Rossi and Sekhposyan (2011a) take Giacomini and Rossi’s (2009) decomposition a
step further by developing a new methodology to identify the sources of models’ forecast-
ing performance. The methodology decomposes the models’ forecasting performance into
asymptotically uncorrelated components that measure instabilities in the forecasting perfor-
mance, predictive content and over-fitting.

Rossi and Sekphosyan (2011a) define predictive content as the correlation between in-

sample and out-of-sample measures of fit, similarly to Giacomini and Rossi (2009). When

52Note that the estimate of the variance to be used to implement the test ag = a; = 0 is complicated by

parameter estimation uncertainty, and it is provided in Giacomini and Rossi (2009).
53The overfitting component is always positive and will be a cause of forecast breakdown in finite samples.

Under special assumptions, Giacomini and Rossi (2009) also provide an overfitted-corrected test for forecast

breakdown.
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the correlation is small, the in-sample measures of fit have no predictive content for the
out-of-sample and vice versa. An interesting case occurs when the correlation is strong,
but negative: in this case, the in-sample predictive content is strong yet misleading for the
out-of-sample. Rossi and Sekhposyan (2011a) define over-fitting as a situation in which a
model fits well in-sample but loses predictive ability out-of-sample; that is, where in-sample
measures of fit fail to be informative regarding the out-of-sample predictive content.

To capture predictive content and over-fitting, they consider the following regression:
ALt+h :a'A£t+Ut+h fOI' t:R7R+]_,...,T, (46)

where AL, is the sequence of estimated out-of-sample loss differences of two models eval-
uated at the estimated parameter values defined in eq. (8) and AL; denotes the in-sample

loss difference of the two models.

Let a = 1% i AE%) (% i AEtALHh) denote the OLS estimate of a in regression
(46), aAL; and tﬂ:ih denote thetggrresponding fitted values and regression errors: AL;,, =
aAL; + u; . Note that regression (46) does not include a constant, so that the error term
measures the average out-of-sample loss not explained by in-sample performance. Then, the

average MSFE can be decomposed as:

T
1
S AL =B+ Up, (47)
t=R

T T

where Bp =0 (% Y AL; ) and Up = 1% > Uyypn. Bp can be interpreted as the component
t=R t=R

that was predictable on the basis of the in-sample relative fit of the models (predictive

content), whereas Up is the component that was unexpected (over-fitting).

R+7-1 T - -
Let AT,P =m! Z ALt+h — ]l:, ALt+h7 and A.,-,P = E(Af,p) ,Bp = BE (Aﬁt),
t=R+17—m t=R

Up = FE(ALyyy) — BE(AL,) . Rossi and Sekhposyan (2011a) propose the following decom-
position:

R+1—-1
1 — — _
— > [ALyy— E(ALyn) = (Arp — Arp) + (Bp— Bp) + (Up = Up) . (48)
m t=R+7—m
They consider three null hypotheses: (i) Constant predictive ability: Hy 4 : ZT’ p = 0 for all
7=m,m+1, ..., P; (ii) No predictive content: Hy p : Bp = 0; and (iii) No overfitting: Hyp :
Up = 0. Under the null hypotheses, they show that the three components, A p, Bp and

Up, are asymptotically independent. Thus, the components in decomposition (48) can be
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used to construct three test statistics to test each of the null hypotheses: constant predictive

ability, predictive content, and overfitting:

T =  sup |VP5;'A,pl (49)
T=m,...,P
r'’” = VPs5'Bp,
Y = VP&, Up.
The FEDA) test rejects “constant predictive ability” when FgDA) > kfj;g , Where kig , the critical

) test, are reported in Rossi and Sekhposyan’s (2011a) Table 1 and depend

ond = 71im (m/P). The FEJB) test rejects “no predictive content” when ‘F%B)‘ > Zq/2, Where

values for the FEDA

Zq/2 15 the /2 — th percentile of a standard Normal distribution. Similarly, FEDU) test rejects

> Zq2. For convenience, we report Rossi and Sekhposyan’s

“no overfitting” when ‘FEDU)
(2011a) critical values for tests with significance level 5% in Table A.5 in Appendix 1. For
the same significance level, z, /o = 1.645.

To gain intuition, consider a simple example where the true data generating process
(DGP) is yrin = B+€12n, where g4 ~ 7idN (0,02). Rossi and Sekhposyan (2011a) compare
the forecasts of two nested models for y;,, made at time ¢, based on parameter estimates
obtained via a rolling estimation scheme with a fixed window size. The first (unrestricted)
model includes a constant only, so that its forecasts are Et, R = %Eﬁ;}tlthJrl Yi+n, t = R,
R+1, ..., T, and the second (restricted) model sets the constant to be zero, so that its forecast

is zero. Consider the (quadratic) forecast error loss difference between the first and the

N2
second model, AL;,j, = (yt+h — py, R) — y? ' »» and the (quadratic) in-sample loss difference

AL, = (yt - Bt,R>2 —y?2. Let a= E (AL, AL;) JE (AL 2). Rossi and Sekhposyan (2011a)
show that a = (8% +40%3* + (402 +20%3%)/R) 1 (3" — 362/ R?).When the models are nested,
in small samples E(AL;) = —(3* + 0?/R) < 0, as the in-sample fit of the larger model is
always better than that of the small one. Consequently, F(Bp) = aFE(AL;) = 0 only when
a = 0. The calculations show that the numerator for a has two distinct components: the first,
(%, is an outcome of the mis-specification in the second model; the other, 302 /R?%, changes
with the sample size and “captures" estimation uncertainty in the first model. When the two
components are equal, the in-sample loss differences have no predictive content for the out-of-
sample. When the mis-specification component dominates, in-sample loss differences provide
information content for the out-of-sample. On the other hand, when a is negative, though the
in-sample fit has predictive content for the out-of-sample, it is misleading in that it is driven

primarily by the estimation uncertainty. For any given value of a, F(Bp) = aE(AL;) =
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—a(B?* + 0?/R). By construction, E(Up) = E(ALiy,) — E(Bp) = (02/R — B%) — E(Bp).
Similar to the case of Bp, the component designed to measure over-fitting is affected by
both mis-specification and estimation uncertainty. One should note that for a > 0, the
mis-specification component affects both E(Bp) and E(Up) in a similar direction, while the
estimation uncertainty moves them in opposite directions. Estimation uncertainty penalizes
the predictive content Bp and makes the unexplained component Up larger.

Rossi and Sekhposyan (2011a) use their proposed method to understand why exchange
rate forecasts based on the random walk are superior to those of economic models on av-
erage over the out-of-sample period. They find that lack of predictive content is the major
explanation for the lack of short-term forecasting ability of the economic models, whereas

instabilities play a role especially for medium term (one-year ahead) forecasts.

3.5 Summary of Findings

The finding that in-sample fit is not indicative of out-of-sample forecasting performance is
widespread in economics and finance. However, recent developments allow researchers to
test and predict forecast breakdowns, that is situations where the in-sample fit does not
provide enough guidance to out-of-sample forecasting performance, as well as methodologies
to decompose models’ relative out-of-sample forecast error losses into separate components to
identify the contributions of instabilities, actual predictive content and overfit in explaining
the models’ performance. The next section sheds some light on the empirical importance of

forecast breakdowns in practice and the reasons behind the breakdowns.

61



4 Empirical Evidence

This section revisits the empirical evidence on forecasting in the presence of instability since
the seminal work by Stock and Watson (2003). Our main goal is to establish whether
the empirical conclusions they reached are still valid, and whether the recent estimation
and forecast evaluation techniques reviewed in this chapter change our perspectives on the
empirical evidence of forecastability of output growth and inflation. We focus on the same
database in Stock and Watson (2003), with the main difference that our database is updated
to the latest available sample, and we perform a series of estimation techniques and tests
that are substantially more extended than theirs.

We consider forecasting quarterly output growth and inflation A-periods into the future.

Let the regression model be:
Vi, =B+ B (L) X+ By (L) Y+ ufy, t=1,...T (50)

where the dependent variable is either Y}, = (400/h)In(RGDP,,/RGDP;) when fore-
casting real GDP growth (RGDP, is real GDP at time ¢) or V", = (400/h) In(Ppp/P;) —
4001n (P;/P,—1) when forecasting inflation growth (P; is the price level at time t), h is the
forecast horizon and equals four, so that the forecasts involve annual percent growth rates
of GDP and inflation. 3, (L) = >°%_, B,;L7 and 3, (L) = 3 9_, By, L7, where L is the lag
operator. We consider several explanatory variables, X;, one at a time. The explanatory
variable, X, is either an interest rate or a measure of real output or unemployment, price,
money or earnings. We consider data for five countries: Canada (labeled "CN"), France (la-
beled "FR"), Germany (labeled "GY"), Italy (labeled "IT"), Japan (labeled "JP"), the U.K.
(labeled "UK") or the U.S. (labeled "US"). Following Stock and Watson (2003), the data
are transformed to eliminate stochastic or deterministic trends. For a detailed description of
the variables that we consider (and their transformations), see the Not-for-Publication Ap-
pendix available at: http://www.econ.upf.edu/ rossi/. In this empirical analysis, we focus
in particular on predicting CPI inflation and output (real GDP) growth using econometric
models and techniques that allow for instabilities. We utilize quarterly, finally revised data
available in January 2011. The earliest starting point of the sample that we consider is
January 1959, although several series have a later starting date due to data availability con-
straints. For the out-of-sample forecasting exercise, we estimate the number of lags (p and
q) recursively by BIC unless otherwise noted; the estimation scheme is rolling with a win-

dow size of 40 observations.’* Tests are implemented using HAC-robust variance estimates,

%We consider only rolling forecasts due to space constraints.
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where the truncation parameter is 7/°.

Faust and Wright (2012, in this Handbook) consider several other models that are useful
for forecasting inflation, in particular judgemental forecasts as well as a fixed coefficient
autoregressive benchmark with a judgemental starting point and a judgemental long run
value, which, they show, provides very competitive forecasts. There are two main differences
between the empirical results in this chapter and Faust and Wright (2012). The latter focus
on real-time data and their sample, which is constrained by the availability of judgemental
forecasts, starts in 1985. We focus on fully revised data that were available in January 2011
since our objective is to study the behavior of inflation over a longer sample period, which
is important in order to uncover potential instabilities in the forecasting performance of the
models.

Unless otherwise noted, in all the tables and figures, Panel A reports results for fore-

casting inflation and Panel B for output growth.

4.1 "Is the Predictive Content Stable Over Time?"

In this section, we test whether the predictive content is stable over time. We focus on
testing the stability of the predictive content by using both traditional Granger-causality
tests, out-of-sample forecast comparison tests, and forecast rationality tests, as well as their
versions robust to instabilities. Then, we evaluate the forecasting ability of time-varying

coefficient models and forecast combinations.

4.1.1 Do Traditional Macroeconomic Time Series Granger-cause Inflation and
Output Growth?

Table 1 reports results of Granger-causality tests as well as Rossi’s (2005) Granger-causality
tests robust to instabilities. For each of the predictors that we consider (reported in the first
column), transformed in several possible ways (described in the second column), and for each
of the countries that we consider (described in the remaining columns), the table reports
p-values of traditional Granger-causality tests (upper row) and p-values of Rossi’s (2005)
Granger-causality test robust to instabilities (lower row, in parentheses), QLR defined in

eq. (3).% The table shows two interesting empirical results. First, the traditional Granger-

®The Granger-causality tests focus on jointly testing whether 3,, = ... = B1, = 0 in regression (50).
Note that in the table several predictability tests are reported, one for each predictor, although the multiple

testing aspect is not taken into account in the calculation of the p-values. There are currently no available
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causality tests show that many of the predictors that we consider do help predicting both
inflation and output growth since, in most cases, the p-values are close to zero. The tables
show which predictors are most useful. For example, inflation does not Granger-cause output
growth in most countries, but some measures of unemployment do. Second, in several cases
traditional Granger-causality tests do not find predictive ability whereas Rossi’s (2005) test
does, thus indicating that there is Granger-causality once instability has been taken into
account. For example, only selected interest rates Granger-cause inflation, although almost

all interest rates do Granger-cause inflation if we take instabilities into account.
INSERT TABLE 1 HERE

To get a sense of how important instabilities are, Figure 1 reports scatterplots of the
p-values of the traditional Granger-causality tests (on the horizontal axis) and of Rossi’s
(2005) Granger-causality test robust to instabilities (on the vertical axis). Panel A in Figure
1 reports results for forecasting inflation and Panel B for output growth. Each dot in the
figure corresponds to one of the series that we consider. The dotted lines represent p-values of
5%, and divide the picture in four quadrants. Dots in the upper right quadrant correspond to
series where no Granger-causality is found by either traditional tests or by Granger-causality
tests robust to instabilities. Dots in the lower left quadrant (close to the origin) correspond
to series where Granger-causality is found by both traditional and robust tests. The upper
left and in the lower right quadrants focus on cases in which the two tests disagree. Dots
in the lower right quadrant correspond to series where traditional Granger-causality tests
do not find evidence of predictive ability whereas Rossi’s (2005) robust Granger-causality
test does find predictive ability. Similarly, dots in the upper left quadrant correspond to
series where traditional Granger-causality tests do find evidence of predictive ability whereas
Rossi’s (2005) robust Granger-causality test does not.

Panel A in Figure 1 shows that there are many dots concentrated in the lower left
panel, indicating that both tests do find Granger-causality for several inflation predictors.
However, there are many more dots in the lower right quadrant than in the upper left
one, thus indicating that there are several cases where Granger-causality is uncovered only
by using tests that are robust to instabilities. Similar results hold for forecasting output
growth, reported in Panel B. We conclude that properly taking into account instabilities

is very important when evaluating whether traditional macroeconomic time series Granger-

tests for multiple forecast comparisons robust to instabilities.
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cause either inflation or output growth and in several cases overturns the empirical results

based on traditional Granger-causality tests.

INSERT FIGURE 1 HERE

4.1.2 Do Traditional Macroeconomic Time Series Beat an Autoregressive Bench-

mark Model in Out-of-Sample Forecast Comparisons Tests?

We next consider the predictive ability of the same macroeconomic variables for forecasting
inflation and output growth out-of-sample. The benchmark is the autoregressive model, and
the forecast horizon is four quarters. Results are broadly similar for the random walk without
drift benchmark and for other forecast horizons. We consider both traditional out-of-sample
forecast comparison tests as well as Giacomini and Rossi’s (2010a) forecast comparisons tests
robust to instabilities.?

Tables 2 and 3 report results of traditional out-of-sample forecast comparison tests. The
first line in Table 2 reports the RMSFE of the benchmark autoregressive (AR) model (labeled
“ARrmse”). In subsequent rows, for every explanatory variable, the first line in Table 2
reports the ratio of the MSFE of the model relative to the MSFE of the autoregressive
benchmark, so that values less than unity indicate that the model forecasts better than
the autoregressive benchmark; the second line (in parentheses) reports the p-value of the
one-sided DM Wp test statistic, eq. (9). The p-values of the DMWp test statistic used
in this empirical application are obtained using the critical values in Giacomini and White
(2006). The table shows little empirical evidence in favor of predictive ability for the models.
However, there are some exceptions: for predicting inflation one year ahead, some measures of
interest rates are useful in some countries, and some measures of output and unemployment
gap are useful for France and Italy; when predicting output growth, several interest rates

are useful for various countries, as well as industrial production and the employment gap for
Canada, Italy and the U.S.

INSERT TABLE 2 HERE

We now turn to out-of-sample forecast comparison tests that are robust to instabilities.
Table 3 reports results for the Giacomini and Rossi’s (2010a) Fluctuation test, eq. (13). The

56

A similar exercise was undertaken by Rossi and Sekhposyan (2010) for the US only. There are two
differences relative to Rossi and Sekhposyan (2010): their sample ended in 2005 whereas ours is updated to

2010, and they also considered real-time forecasts, which we do not.
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test is implemented by choosing 6 = 0.375, which, for example, gives a window size of 60 out-
of-sample observations when the total number of out-of-sample forecasts is 160. Asterisks
denote significance at the 5% level. In many cases we find empirical evidence that the
model with macroeconomic predictors forecasts better. In particular, there is evidence that
some interest rates (e.g. real overnight and T-bill rates), output measures (e.g. real GDP,
unemployment, etc.), stock prices and some measures of money supply were useful predictors
for inflation at some point in time. Similarly, the spread, stock prices, unemployment, capital
utilization and several measures of money supply were useful predictors for output growth at
some point in time. Figure 2 reports a scatterplot of the p-values of the traditional DM Wp
“average-out-of-sample” traditional test statistic (labeled M SE —t, on the horizontal axis)®’
and of the Giacomini and Rossi’s (2010a) Fluctuation test (on the vertical axis). Figure 2 is
interpreted as follows: dots on the right of the vertical critical value line represent successful
predictors according to the traditional test, whereas dots above the horizontal critical value
line represent successful predictors according to the Fluctuation test. Clearly, both Panels
A and B show that several of the dots are in the upper, left quadrant. Thus, even though in
many cases traditional tests would not find evidence that any of the predictors are useful for
forecasting inflation or output growth, the Fluctuation test uncovers that they were indeed
useful predictors at some point in time. The problem is that their predictive ability was

masked by instabilities.
INSERT TABLE 3 AND FIGURE 2 HERE

A scatterplot of the in-sample versus the out-of-sample tests suggests that in-sample
tests typically find more predictive ability than out-of-sample tests. Figure 3 plots results
for traditional tests, whereas Figure 4 focuses on the robust tests. The main conclusion is
that out-of-sample tests are a tougher benchmark to beat, due to the reasons discussed in
Section 3, and confirms one of the main themes in this Chapter, namely that in-sample tests

do not provide reliable guidance to out-of-sample forecasting ability.
INSERT FIGURES 3 AND 4 HERE

It would also be interesting to investigate the behavior of the relative predictive ability
over time by plotting the Fluctuation tests for each predictor. However, this is infeasible

due to space constraints. Instead, we report the percentage of predictors whose Fluctuation

STP-values for the DMWp test are calculated using Giacomini and White (2006).
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test is outside the critical value at each point in time. Figure 5 reports the results. Panel A
in Figure 5 shows that the largest percentages of rejections for inflation forecasts happened
around the mid- to late 1980s, whereas there is much less empirical evidence in favor of the
predictors in the late 2000s. Results are similar for output (Panel B), except that there
seems to be more predictive ability in forecasting output growth in the late 1990s and early

2000s relative to inflation.
INSERT FIGURE 5 HERE

Table 4 reports results for the Clark and McCracken’s (2001) ENCNEW test statistic.
See Clark and McCracken (this Handbook) and Busetti, Marcucci and Veronese (2011) for
an analysis of the relative properties of the ENCNEW test relative to other tests proposed
in the literature in stationary environments. The latter test finds much more evidence in
favor of predictive ability than the test reported in Table 2. Several measures of interest
rates significantly help predicting inflation for most countries, as well as several measures
of output and money. Predicting output growth is instead much harder, and only selected
measures of interest rates seem to work well across countries. The reason Tables 2 and 4
reach different conclusions is because of the different null hypothesis of the two tests. Table
2 tests for equal predictive ability at the estimated parameter values, whereas Table 4 tests
for equal predictive ability under the assumption that the autoregressive benchmark model

is the truth.

INSERT TABLE 4 HERE

4.1.3 Are Forecasts Rational?

Table 5 reports the results of Mincer and Zarnowitz’ (1969) tests for forecast rationality.
For every explanatory variable, the table reports the p-value of the traditional Mincer and
Zarnowitz’ (1969) test statistic, eq. (18). The table shows that rationality is almost never
rejected. However, results are very different when considering robust forecast rationality
tests. Rejections at 5% significance level for the Rossi and Sekhposyan’s (2011b) Fluctuation
rationality test, eq. (19), are reported by asterisks. There are several instances where
rationality is rejected, in particular when using interest rates and monetary aggregates for
predicting inflation in several countries, as well as for almost all predictors of output growth.
Figure 6 reports a scatterplot of the traditional Mincer and Zarnowitz’s (1969) test statistic

(on the horizontal axis) and of Rossi and Sekhposyan’s (2011b) Fluctuation rationality test

67



(on the vertical axis).”® The figure shows that in several cases one would not find evidence
against rationality by using the traditional tests, but would reject rationality using the
Fluctuation rationality test. That is, there is empirical evidence that forecasts were not

rational at least at some point in time.
INSERT TABLE 5 AND FIGURE 6 HERE

Results are very similar for forecast unbiasedness tests — see Panel C and D in Table 5,
which report results for tests for traditional forecast unbiasedness and for robust unbiasedness
tests (Rossi and Sekhposyan, 2011b), and Figure 7, which reports scatterplots of p-values

for the same tests.

INSERT FIGURE 7 HERE

4.1.4 Are the Empirical Conclusions Robust to the Choice of the Window Size?

Table 6 reports results for Pesaran and Timmermann’s (2007) "Ave" procedure for combin-
ing forecasts across window sizes, eq. (24), relative to the autoregressive benchmark. For
each regressor, the first row reports the ratio of the MSFE of the "Ave" forecast relative
to the MSFE of the autoregressive benchmark, and the second line reports p-values of the
Diebold and Mariano’s (1995) and Giacomini and White’s (2006) test. In the case of infla-
tion, reported in Panel A, the procedure is capable of improving the forecasting performance
of several predictors; in particular, for the U.S., the successful predictors include several
interest rates (Treasury bills, bonds, overnight rates, both nominal and real), stock prices,
several output measures (including GDP, capital utilization, unemployment) and producer
price indices. The last row of the table reports similar results for the Pesaran, Schuermann
and Smith’s (2009) "Ave-Ave" procedure, which combines all predictors across all windows.
Interestingly, the "Ave-Ave" procedure does perform significantly better than the autore-
gressive benchmark for all countries.

Turning to forecasting output growth, Panel B shows that Pesaran and Timmermann’s
(2007) "Ave" procedure is also useful for predicting output growth, although to a smaller
extent. A few predictors, among which the first difference of the real overnight interest
rate, become statistically significant for almost all countries, as well as exchange rates, stock
prices and money measures. Again, the last row shows that the "Ave-Ave" procedure does

perform significantly better than the autoregressive benchmark for all countries.

58Note that, in this case, for simplicity, unlike in the previous tables, we report the test statistic value

rather than its p-value.
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INSERT TABLE 6 HERE

Results are even more striking when considering Inoue and Rossi’s (2011) forecast com-
parison test procedure robust to the choice of the window size, eq. (27). Rejections of the
test at the 5% significance level are marked by asterisks in Table 6. The table shows that it
is possible to reject the benchmark model for almost every predictor for some choice of the
window size. Overall, we conclude that the choice of the window size significantly affects the
empirical evidence on predictive ability, and that methodologies that average information

across window sizes are typically quite successful.

4.1.5 Do Time-Varying Estimation Models and Forecast Combinations Improve

Forecasts?

We consider four techniques that have been used in the literature to estimate models in
the presence of instabilities and which we reviewed in Section 2.3: forecast combinations
with equal weights (labeled "EWA"), Bayesian model averaging (labeled "BMA"), factor-
augmented Autoregressive models (labeled "FAAR"), and, for predicting inflation, Stock and
Watson’s (2007) UCSV model (labeled "UCSV"). Unreported results show that intercept
corrections never improve over the autoregressive benchmark for any of the predictors.

We follow Faust and Wright (2009) and Wright (2009) in the estimation. In partic-
ular, for the BMA model, eq. (34), we assign the same prior used in Faust and Wright
(2009): the prior over the parameters of the n models is such that, if each model is
Yern = Bixi + Eirrn, where ;4 ~ N (0,0?), then the prior for 3, conditional on o is
N (8, ¢ (02 Zthl xitx;t> 1), ¢ = 2, the marginal prior for ¢ is proportional to 1/0. The
models’ forecasts are produced based on the posterior mean of the parameters. The n-
forecasts are then combined by a weighted average; the weights are determined by the pos-
terior probability that each model is correct. The FAAR model is estimated as follows:
Yern = Bo + Doy Bizit + Z?:o Y;¥i—j + € where 2y are the first m principal components; p
and ¢ are simultaneously chosen by BIC. The max number of lags for y that we consider is
4, and the maximum number of principal components is 6.

Results for traditional out-of-sample forecast comparison tests relative to the autore-
gressive benchmark are reported in Table 7. The table reports the ratio of the MSFE of
each of the models relative to the autoregressive benchmark as well as the p-value of the
DMWp test, eq. (41), using Giacomini and White’s (2006) critical values in parenthesis.

The table shows that equal weighted forecast combinations perform significantly better than
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the benchmark for forecasting inflation in most countries except Italy and France, in which
cases the MSFE is nevertheless not much worse than that of the benchmark. The UCSV
model also performs quite well especially for Germany, Japan and the U.S., although its
forecasts are not better than the equal weighting average. BMA works quite well too: in
most countries, it has a lower MSFE than the autoregressive model, although the difference
is not significant except for France. FAAR models do not perform particularly well.

When forecasting output growth, forecast combinations are still the preferred choice for
all countries except in the case of Japan, where the FAAR model performs better (although
not significantly so) than the autoregressive benchmark. Again, BMA'’s forecasts are better
than the autoregressive benchmark for several countries, although not significantly so except
in the case of Germany.

Finally, we consider forecast comparisons tests robust to instabilities. According to Gia-
comini and Rossi’s (2010a) Fluctuation test, reported in Table 8, when forecasting inflation
both EWA and UCSV models beat the benchmark for all countries; similar results hold for
the BMA in all but two countries. The Fluctuation test instead does not find any predictabil-
ity in FAAR models except for Canada and Germany. Results are overall very similar for

predicting output growth except that FAAR models do better.
INSERT TABLES 7 AND 8 HERE

Figure 8 reports plots the Fluctuation test over time for each of the models that we
consider.”® Panels A-D report results for forecasting inflation. Panel A shows the forecasting
ability of EWA models is very strong, and suggests it is strong especially in the early 1980s;
results are similar for BMA (Panel B). Panel C shows that FAAR models were never better
than the benchmark, whereas Panel D shows that the UCSV model is better than the
benchmark, both at the beginning of the sample but especially in the late 2000s. Panels E-G

in Figure 8 show similar results for forecasting output.

INSERT FIGURE 8 HERE

4.2 "In-sample Versus Out-of-Sample"

We conclude the empirical analysis by considering two additional empirical questions. The
first is whether there are forecast breakdowns. The second is what are the sources of the

difference between in-sample fit and out-of-sample forecasting ability.

»The Fluctuation test is implemented using a centered moving window.
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Table 9 considers Giacomini and Rossi’s (2009) forecast breakdown test, eq. (45). The
table shows that most predictors, with rare exceptions, have been experiencing forecast
breakdowns. This is true both when forecasting inflation as well as output growth. For
most of the series, the p-value of the forecast breakdown test is zero, which implies that the
empirical evidence in favor of forecast breakdowns is very strong. Thus, the in-sample fit is
not indicative of the out-of-sample performance for most predictors.

Finally, Table 10 investigates the causes of the differences between the in-sample fit
and the forecasting ability of the candidate predictors relative to the autoregressive model
by using Rossi and Sekhposyan’s (2011b) test, eq. (49). Rossi and Sekhposyan’s (2011b)
decomposition, eq. (48), applies to the relative (de-meaned) MSFE differences in the numer-
ator of the Diebold and Mariano’s (1995) test statistic. The decomposition investigates the
contributions of time-variation, over-fitting and marginal predictive content to explain the
difference between in-sample fit and out-of-sample forecasting ability of the models. From
Table 2, which reported the ratio of the MSFE differences, we know that the MSFE of the
autoregressive model is lower than that of the predictors’s model for most predictors. Thus,
Rossi and Sekhposyan’s (2011b) decomposition helps understand why the predictors’ model
does not significantly improve over the autoregressive model in forecasting out-of-sample.

In the case of forecasting inflation (Panel A), the FEDA) test points to the existence of
instabilities in most series and for most countries. In several cases, in particular in the

) statistic is positive and significant and the FSDU)

case of nominal interest rates, the F;B
component is significant only rarely, suggesting that nominal interest rates may have some
predictive content for inflation and the main reason for their poor performance is insta-
bility. In several other cases, in particular when considering real interest rates as well as
employment /unemployment and capital utilization, the Bp component is instead signifi-
cantly negative, thus suggesting that not only there is instability but also that in-sample
fit is misleading. In the case of stock prices and some measures of real activity, overfitting
(Up) is also important. For U.S. data, in particular, Table 10 shows that money does have
predictive content for inflation, although it is highly unstable in most cases; the in-sample
predictive content of measures of real activity and some nominal interest rates (e.g. the
3-month T-bill, and the 5 and 10 years maturity bonds), instead, is negatively correlated
with out-of-sample predictive content. The least empirical evidence of overfitting and the
most empirical evidence of predictive content seem to be related to inflation predictors such

as the monetary base and M1.

INSERT TABLES 9 AND 10 HERE
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Predicting output shares similar features but also interesting differences. As in the case
of predicting inflation, instabilities are really important. Overall, however, notwithstanding
instabilities, most interest rates demonstrate significant predictive ability on average over
the sample, as well as real output measures such as employment, capital utilization, several
measures of money growth and inflation. The reason for their poor performance is attributed
to the fact that, for most series, overfitting is also significantly present, and that undermines
the positive effects of the predictive content. The in-sample fit of exchange rates and stock
prices, instead, is significantly misleading for predicting output growth out-of-sample. For
the U.S., in particular, interest rates and money measures seem to have potential explanatory
power, although undermined by instabilities; exchange rates and stock prices instead, mostly

overfit.

5 Conclusions

This chapter shows that there are two important stylized facts regarding the forecasting
ability of economic models. The first is that the predictive content is unstable over time.
The second is that in-sample predictive content does not necessarily guarantee out-of-sample
predictive ability, nor the stability of the predictive relation over time. These issues were
discussed, among others, in an influential paper by Stock and Watson (2003), who also
provided empirical evidence using a large database of macroeconomic predictors for both
inflation and output growth. As we show, these issues are important not only in Stock and
Watson’s (2003) database, but also in several models and databases commonly considered
in macroeconomics, finance, as well as international finance.

However, several new methods for estimation and inference have been developed in the
recent literature to help researchers and practitioners to deal with these issues. In partic-
ular, researchers who are interested in evaluating predictive ability, but worry about the
predictive content being unstable over time, can rely on Granger-causality tests robust to
instabilities (Rossi, 2005), out-of-sample forecast comparison tests robust to instabilities
(Giacomini and Rossi, 2010), and forecast rationality tests robust to instabilities (Rossi
and Sekhposyan, 2011b). Instabilities can be exploited to improve the estimation of the
forecasting models, for example by estimating historic breaks via structural breaks or time-
varying parameter models (Pesaran and Timmermann’s (2007) “ROC” procedures and Stock
and Watson’s (2007) UCSV model) or models with multiple discrete breaks (Pesaran, Pet-

tenuzzo and Timmermann, 2006, and Koop and Potter, 2007), or by combining models’
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forecasts either via equal weights, Bayesian model averaging or across window sizes (Pesaran
and Timmermann’s (2002) “Ave” procedure) or across recursive and rolling schemes (Clark
and McCracken, 2009) or by intercept corrections (Clemens and Hendry, 1996). Other tools
involve inference robust to the choice of the window size (Inoue and Rossi, 2011, and Hansen
and Timmermann, 2011).

Researchers should also worry about the fact that in-sample fit does not guarantee good
out-of-sample forecasting performance. Forecast breakdown tests (Clemens and Hendry,
1998, and Giacomini and Rossi, 2009) can be used to establish when that is the case, and
Rossi and Sekhposyan’s (2011b) decomposition can be used to determine the reasons behind
the difference between in-sample fit and out-of-sample forecasting performance.

An empirical application to the updated Stock and Watson’s (2003) large database of
macroeconomic predictors for inflation growth and real GDP growth highlights the following,
general conclusions:

(i) there is substantially more empirical evidence in favor of Granger-causality of typical
macroeconomic predictors when using Granger-causality tests robust to instabilities;

(ii) there is also substantially more empirical evidence in favor of out-of-sample forecasting
ability when using out-of-sample forecast tests robust to instabilities;

(iii) there is more empirical evidence against forecast rationality when one allows for
instabilities;

(iv) given the widespread empirical importance of instabilities, it comes at no surprise
that the choice of the window size is crucial; forecast combinations across window sizes tend
to perform well out-of-sample, and the empirical evidence in favor of predictive ability is
clearly stronger across predictors when using methods that are robust to the choice of the
window size;

(v) equal weighted averaging is among the time-varying estimation models that perform
the best out-of-sample; Bayesian model averaging and the UCSV model by Stock and Watson
(2007) also do very well (the latter in the special case of forecasting inflation) although not as
well as equal weighted forecast combination. Factor autoregressive models tend to perform
worse than an autoregressive benchmark;

(vi) there is substantial evidence of forecast breakdowns, which is related not only to
instabilities, but also poor predictive ability of the regressors; in several cases, even if the
regressors have predictive power, it appears to be undermined by overfitting.

The results in this chapter suggest several avenues for future research. First, equal weight

forecast averaging is one of the most successful and stable forecast methodologies in the pres-
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ence of instabilities. Understanding why that is the case might provide useful guidelines for
improving the estimation of time-varying parameter models (see Hendry and Clements, 2002,
and Timmermann, 2006). Second, the widespread presence of forecast breakdowns suggests
the need of improving ways to select good forecasting models in-sample. In addition, it is
also very important to understanding the economic causes of such breakdowns in forecasting

accuracy. Developing such procedures is an important area for future research.
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6 Appendix 1. Critical Value Tables

Table A.1. Critical values for Rossi’s (2005)
Robust Granger-causality Test

D QLR Exp — Wald;, Mean — Wald}
1 9.826 3.134 5.364
2 14.225 5.015 8.743
3 17.640 6.738 11.920
4 21.055 8.191 14.362
5 24.550 9.824 17.523
6 27.377 11.203 19.877
7 30.414 12.630 22.389
8 33.717 14.225 25.397
9 36.552 15.537 27.844
10 39.020 16.761 30.039

Notes. The table reports asymptotic critical values of Rossi’s (2005) QLR , Exp—Wald
and Mean — Wald} test statistics for tests of nominal size equal to 5%. See Section 2.2.1

for details.

Table A.2. Critical values for Giacomini and
Rossi’s (2010a) Fluctuation Test (k&%)

) Two-sided Test One-sided Test
1 3.393 3.176
2 3.179 2.938
3 3.012 2.770
4 2.890 2.624
.5 2.779 2.475
.6 2.634 2.352
7 2.560 2.248
.8 2.433 2.080
.9 2.248 1.975

Note. The table reports the critical values (k¢%) of the Fluctuation test in Proposition

1 in Giacomini and Rossi (2010a). The nominal size of the test is 5%, § = m/P, where m is
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the size of the rolling window used for out-of-sample smoothing and P is the out-of-sample

size. See Section 2.2.2 for details.

Table A.3. Critical Values for Rossi and Sekhposyan (2011b)
Fluctuation Optimality Test

p p: 010 020 030 040 050 060 070 080 0.90
1 12.08 10.59 9.65 875 7.75 696 649 6.12 5.37
2 23.93 21.01 1881 16.90 16.45 14.51 13.29 11.95 10.65

Note. The table reports critical values for the Fluctuation optimality test in Rossi and
Sekhposyan (2011b). The nominal size of the test is equal to 5%, u = m/P, where m is
the size of the rolling window used for out-of-sample smoothing, P is the out-of-sample size,

and p is the number of restrictions. See Section 2.2.3 for details.

Table A.4. Critical Values for Inoue and Rossi’s (2010) Test Statistics

Test Statistics: Critical Values:
A. Forecast Comparison Tests
Non-Nested Models

R 2.7231
Ar 1.7292

p 1 2 3 4 5

Nested Models

R (rolling window) 51436 7.1284 8.4892 9.7745  10.823
A& (rolling window) 1.7635 2.4879 2.9559  3.39 3.7427
R (recursive window) 3.0078 4.2555 5.0577 6.1064  6.3340
A& (recursive window) 1.4955 2.1339 2.3919 2.9668 2.9717

B. Forecast Optimality
RYY (forecast optimality) 1.3342 24634 3.5569 4.6451 5.7182
AW (forecast optimality) 1.1424 22009 3.245  4.2848 5.3166

Note. The table reports critical values for the Inoue and Rossi’s (2010) test statistics. The
nominal size of the test is 5%, ¢ = 0.15, p is either the number of regressors in the large model

in excess of those in the small model (for the nested models’ forecast comparison tests) or
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the number of regressors used to check forecast optimality (for the forecast optimality tests).
See Section 2.3.1 for details.

Table A.5. Critical Values for Rossi and Sekhposyan’s (2011a) FEDA) Test

0: 0.10 020 030 040 050 0.60 0.70 0.80 0.90
/ﬂi*g: 10.496 6.609 4.842 3.738 2.984 2412 1.900 1.446 0.952

Note. The table reports critical values kﬁg for the test statistic Fg‘). The nominal

significance level is equal to 5%. See Section 3.4 for details.
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7 Tables

Table 1, Panel A (Inflation). Granger-causality and Rossi’s (2005) p-values

Indicator Trans. CN FR GY IT JP UK US
rtbill lev 0.01 0.00 0.00 0.01 0.31 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

rbnds lev - - -- - - - - - - 0.00 0.00
-- -- - - - - - - (0.00)  (0.00)

rbndm lev 0.01 - - - - 0.00 - - - - 0.02
(0.00) -- - - (0.00) -- -- (0.00)

rbndl lev 0.02 0.00 0.01 0.00 0.31 0.00 0.01
(0.00) (0.00) (0.00) (0.00) (0.04) (0.00) (0.00)

rovnght  1d 0.12 0.00 0.00 0.16 0.01 0.82 0.02
(0.10)  (0.06) (0.00) (0.46) (0.00) (0.27) (0.04

rtbill 1d 0.11 0.00 0.00 0.46 0.01 0.00 0.00
(0.30) (0.03) (0.00) (0.77) (0.00) (0.00 (0.00)

rbnds 1d - - - - - - - - - - 0.00 0.01
- - -- - - - - - - (0.00) (0.07)

rbndm 1d 0.10 - - - - 0.80 - - - - 0.07
(0.00) -- - - (0.01 - - -- (0.43)

rbndl 1d 0.10 0.01 0.01 0.65 0.06 0.00 0.16
(0.06) (0.14) (0.05) (0.00 (0.30 (0.00 (0.34)

rrovnght  lev 0.11 0.01 0.01 0.09 0.00 0.62 0.00
(0.00)  (0.00 0.00 0.06) (0.00) (0.75) (0.00)

rrtbill lev 0.02 0.00 0.01 0.83 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

rrbnds lev - - - - - - - - - - 0.00 0.00
- - - - - - - - - - (0.00) (0.00)

rrbndm lev 0.00 -- - - 0.85 - - -- 0.26
(0.00) - - - - (0.06) - - - - (0.00)

rrbndl lev 0.00 0.04 0.00 0.99 0.00 0.00 0.22
(0.00) (0.00) (0.00 (0.06) (0.00) (0.00) (0.00)

rrovnght  1d 0.00 0.00 0.00 0.16 0.00 0.82 0.00
(0.00) (0.06 0.02) (0.46) (0.00) (0.69) (0.00)

rrtbill 1d 0.00 0.00 0.00 0.06 0.00 0.00 0.00
(0.00) (0.04) (0.00) (0.62) (0.00) (0.00) (0.00)

rrbnds 1d - - -- -- -- -- 0.00 0.00
- - - - - - - - - - (0.00) (0.00)

rrbndm  1d 0.00 -- - - 0.80 -- - - 0.07
(0.00) - - -~ (0.24)  -- -~ (0.15)

rrbndl 1d 0.00 0.01 0.00 0.65 0.00 0.00 0.16
(0.00) (0.26) (0.00) (0.01) (0.00) (0.00) (0.10)

rspread  lev 0.93 0.03 0.59 0.00 0.00 0.24 0.00
(0.05) (0.00) (0.81) (0.00) (0.00) (0.00) (0.00)

exrate Inld 0.96 0.02 0.27 0.79 0.00 0.23 0.07
(0.68) (0.00) (0.61) (0.63) (0.00) (0.38) (0.02)

rexrate Inld 0.32 0.04 0.14 0.28 0.00 0.68 0.07
(0.22) (0.00) (0.40) (0.57) (0.00) (0.58) (0.02)

stockp Inld 0.30 0.61 0.74 0.86 0.03 0.01 0.42
(0.00) (0.45) (0.00) (0.20) (0.00) (0.00) (0.47)

rstockp Inld 0.14 0.84 0.58 0.89 0.02 0.06 0.22
(0.00) (0.48) (0.00) (0.56) (0.00) (0.00) (0.11)

rgdp Inld 0.00 0.02 0.00 0.38 0.05 0.21 0.01
(0.00) (0.01) (0.00) (0.02) (0.00) (0.00) (0.00)

rgdp gap 0.00 0.00 0.00 0.21 0.25 0.02 0.01
(0.00) (0.00) 9§00) (0.14) (0.32) (0.00) (0.00)
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Table 1, Panel B. (Output) Granger Causality and Rossi’s (2005) p-values

Indicator Trans. CN FR GY IT JP UK US
rtbill lev 0.00 0.98 0.02 0.42 0.00 0.02 0.03
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

rbnds lev - - -- -- -- - - 0.19 0.06
- - -- -- -- - - (0.00) (0.00)

rbndm lev 0.04 -- -- 0.21 - - -- 0.30
(0.00) -- -- (0.00) -- -- (0.00)

rbndl lev 0.10 0.90 0.76 0.15 0.00 0.12 0.38
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

rovnght 1d 0.11 0.00 0.86 0.00 0.07 0.57 0.00
(0.00) (0.00) (0.05) (0.00) (0.00) (0.29) (0.00)

rtbill 1d 0.00 0.12 0.46 0.74 0.12 0.00 0.01
(0.00) (0.00) (0.13) (1.00) (0.00) (0.00) (0.00)

rbnds 1d - - -- -- -- - - 0.00 0.02
- - - - - - - - - - (0.00) (0.00)

rbndm 1d 0.01 - - - - 0.91 - - - - 0.03
(0.00) -- -- (0.00) - - -- (0.00)

rbndl 1d 0.03 0.06 0.30 0.81 0.47 0.00 0.02
(0.00) (0.00 0.00) (0.01) (0.00) (0.00) (0.00)

rrovaoght  lev 0.11 0.13 0.03 0.12 0.26 0.22 0.62
(0.00) (0.02) (0.00) (0.00) (0.04) (0.48) (0.61)

rrtbill lev 0.05 0.96 0.04 0.38 0.44 0.14 0.09
(0.04) (0.00) (0.00) (0.00) (0.10) (0.16) (0.13)

rrbnds lev -- -- -- - - -- 0.01 0.07
- - - - - - - - - - (0.02) (0.21)

rrbndm lev 0.54 - - - - 0.26 - - -- 0.00
(0.07) - - - - (0.00) - - - - (0.00)

rrbndl lev 0.84 0.98 0.01 0.30 0.24 0.02 0.00
(0.05) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

rrovaght  1d 0.94 0.48 0.00 0.42 0.81 0.32 0.80
(0.84) (1.0()) (0.08) (0.27) (1.00) (0.80) (0.34)

rrtbill 1d 0.72 0.98 0.00 0.26 0.55 0.29 0.45
(0.74) (1.00) (0.00) (0.77) (0.83) (0.25) (1.00)

rrbnds 1d - - - - - - - - - - 0.31 0.65
- - -- - - -- - - (0.22 (1.00)

rrbndm 1d 0.65 - - - - 0.45 - - - - 0.60
(0.48) -- -- (0.29) - - -- (1.00)

rrbndl 1d 0.52 0.95 0.01 0.48 0.55 0.15 0.56
(0.42) (1.0()) (0.15) (0.31) (1.00) (0.36) (0.89)

rspread lev 0.00 0.00 0.00 0.00 0.21 0.58 0.00
(0.00) (0.00) (0.00) (0.00) (0.02) (0.00) (0.00)

exrate Inld 0.81 0.79 0.16 0.14 0.66 0.91 0.85
(0.58) (1.00) (0.88) (0.00) (0.00) (0.05) (0.41)

rexrate Inld 0.94 0.78 0.15 0.14 0.74 0.82 0.85
(0.79) (1.00) (0.87) (0.00) (0.08) (0.08) (0.41)

stockp Inld 0.00 0.04 0.03 0.01 0.00 0.00 0.00
(0.00) (0.00) (0.04) (0.02) (0.00) (0.00) (0.00)

rstockp Inld 0.00 0.04 0.01 0.01 0.00 0.00 0.00
(0.00) (0.46) (0.00) (0.02) (0.00) (0.00) (0.00)

98



FR GY 1T JP UK US

Trans. CN

Indicator

ip

— —~ — —~ —~ — — — — —_ — — — —_ —~ — — —~ —~ — — — — —_ — — — |
N IO O N O O 0INNOONODO OO ONOOO O~ ON TN ONOMNMOF A1 OoONMMOWONODOTF OO DO O
OSSN OO MO ST IDINO OSSN OMNS S AH oSO S FODINSoSSSSS
OO0 0000 000000000000 0000000 0000000000 0000000 HO0OoOOoOoOO O
S~— S~— S~— SN— SN— N— N— N— S~— ~— SN— SN— N— N— S~— S~— N— N~— SN— N— S~— N— N— N— S~— N— S—]
—~ —~ — — — — — — — —~ — —~ — — —~ — —~ — — — — — — — —~ — —~ |
N - N R = o e o R e R o= e I = N )
SO S S S S S S oSX -SSANSSoSHOoFRLAamMS S8 mocNbdISonNSEOnd
OO 0000 000000000000 0000000000000 00 1000 1000 0000000 —
~— ~— ~— ~— N~— ~— N— N— N— ~— ~— ~— N— ~— ~— N~— N— N— ~— SN— ~— SN— N~— N— ~— N~— ~— S—
—~ —~ — — — — — ~~ ~—~ —~ — — — —~ — — — ~~ — — ~~ — ]
oY oo oo oo oo oY o1 oMmMI~OoO YO oOwWMmM oo oWwor o oo 000 oOW o oo oM™
OOV ONODODDOOODOIWMO OVMNOTFHI-—HO~OMOTO ! ' TODODFH VDO ODDODODDODONO ! 'ooooo—H O
OO0 0000000000000~ o000 oooocoocoooo ' " ocooooooooooo ! 'oocooco o
S~— S— SN— SN—r SN— SN— SN— S~— S— SN— SN— SN— SN— S~— S— SN— SN— S~— SN— SN— SN— SN— S—]
~—~ ~—~ — — — — —~ ~—~ — — — o — —~ — — — — — — — ~— — ]
O NN OO DO O N OM NN AN OO0 O~V INOoONDIO DWW D o1 OO oONOWLWOD O Mmoo O I~
NMAN—ASS SOOI 1SS0S ITFMNMAOOMSSAD ' ' ' HSO— OIS d ' 'O
o000 OoOoOoOoc o000 oooocococoocooco—~ ' '"coo-roocorococo—~ ' 'oHo—o o
~— ~— ~— ~— ~— ~— N~— N~— ~— N— N~— ~— N~— ~— ~— SN— ~— S~— ~— SN— ~— N~— SN— S~—|
—~ — —~ — — — —~ —~ —~ ~— —~ — — —~ — — — —~ — —~ —~ — — ~~ — — ]
O N OO H OO N O~ IO NI~ 0000V AN O ITMNOHODMNMMNONNNSATFORI-OOMOD D
SOS—HO ORI ANOS—TMOoOOMO 200000V~ REMNMFOoODVWOoDMmMOMmodOI oD~
OO 0000 000000000000 H OO0 000000000000 T O0O000000000O OO OO N
— — on — — — — — — — — — — on — — — on — — — —_ — —
oM O 0O OO MO MNO0 DO OOV OODNA MDD WO NO~-M~-Oowooow O ocomocNo
SO0 ODRNDODDODDDDODODDOMO VOO OoOTFOMON-SO ' ' O~V WoAI~-IS N 'iooN O O
=R R Y R Jes e R e N Jan Mol an i an e el B I e B s B s B s B s B e B s S s o i o s R S R o B I o B s B s B e B o s o B B o B o B o B o S e B |
N— S~— S~— SN— SN— SN— N— N— S~— ~— SN— SN— N— S~— S~— N— N~— N— N— SN— N— N— SN— p—
— — — — —~ — o — — — — —~ — — — — — — — — — — — — — — — |
oI O~ O I I DA IO I ON OO I~ IO N O - T DIV IV ONOON OO NN OO DTN OO O O I~
SN0 —HOMOS—HINOANOOOMOOHNINTOMPVRAONIOD NS FTOMIOMO 12000 AND —
(= =lofoNalololololo ool ool ol ool ol ool ol ol ool ool ol ol ol ool ol ool Rl ol o N ol o iR
N~— S~— S~— S~— S~—r N— N~— N— N~— S~— S~— N— N— N~— S~— N— N— N~— S~— N— ~— N~— N— N— ~— N~— ~— S~—|

= el = = = < o] = = < o] ol = ol = el o] = = el ol

w s> = w > w - Q& 4 & 4= d 4= d == 8 4= 8 4 8 =49 @ =49 49 = =

20 &) = 50 Q — 80 =] =) = = = =] =) = = =] = = =] = = =] = = = =)

— — — — — — — — — — — — — — — — — — — — — — —

o Q Q —
= o, o, = =] =] =] = g =) g =i = o [s) Q e}
2, Q Q Q o) < — — = o= = — o o [e) o o o Q Q
oo § § 5§ E £ ® » B & & & 2 & 2= 2 3 2 g g 2 g B B E E
= &) (5] O =] j=] j=] o o8 O ) o8 o8 ] () = = = =




Table 2, Panel A (Inflation). Relative MSFE and p-values
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Table 2, Panel B (Output). Relative MSFE and p-values
CN

Indicator [ Trans. |

O NI~ ON T HID LT NI O OMNMMINDIN VDN ODOID FI=I~OMOI~-OHI-— N —~ —DON~©  —~
YA NCO T OO OoOQARTATRIRAAQAMAMAMN AN A;Q 100 !
N o~ —~0 -0~ 00—~ 0 1040 -0 ~0 -0 ~0 -0 -~0—0-0 000 'L 'dlocococos 'L L
~— N~— N— N— ~— ~— ~— ~— ~— N~— N~— N— N— ~— ~— ~— ~— ~— N~— N— ~— ~—
— —~ —~ —~ —~ — —~ — — — —~ —~ — —~ —~ — — —~
—HN DWWV NN HH IO~ OO —OWFI-MN VO ~FOONOIHH  —NHOD  ~—~ D0 M  ~—~
oW mn ! ook onad ! AN O TR R X ernaAae QW
N ococo ' l—-oc-o oo 'docoro—-o—o 'derio-HOoOo o000 'ddo-Ho ' LTl o-Ho L L
~— N~— N— ~— ~— ~— N~— N~— N— N— ~— ~— ~— ~— ~— N— ~— ~—
— — — —~ —~ — —~ — — —~ —~ — —~ —
D= N ~HFTNODOMAN N NN O N SO N S ANO W N S0 N
SejN=NoN R R R R N N ! SO —HDI M ! — 00O 0N D ! O~ =3 o 0O D !
o™ — O /I\_/I_\101010 (_(101000 (_(101010 (_(1010 /I_\_/I\OOOO /I\_/I\
N— N— N~— S~— S~— N— N~— N~— S~— S~— N— N~— N~— S~—
— — — —~ — — —~ — — —~ — — —~ — — —~ — —
—H0 D MmO W OI~ONN  ~FOODOD~HO MmN NONVIDH —ODDTD—  ~—~  —~OD~F00o  —~
SRS NN O RO b A I SR I M NN OO 5 0000 X0 ™ MAaANR
O—Ho ' oA Ao -0 'l o000 'drioHOHOHAO ' oo 'L Lo -o TN L
S~— N— N— S~— S~— S~— SN— N— N— N— S~— S~— S~— SN— N— N— S~— S~—
—~ —~ — —~ —~ —~ —~ —~ —~ — — —~ — —~
VN N N VORI N m,HA TN OD N NN O A N~ O NN N SISt
M| — LGN R =N ! D0 OO O ! S — N 0 =B ieRaila) !
O O L 'loo—o—~o L'l oococ—~o ~— —_—~— O OO O L'l oo—~o ~— —_— O - O NN
SN— N— S~— S~— SN— N— N— S~— S~— S~— SN— N— S~— S~—
— — — —~ —~ —~ —~ —~ — — —~ —~ —~ —~
OO N mCHDDODI—HD | N O VO MNMO N SN0 ANNIDD N 0O N S AN S
O N D NN D NSO D ! oo o D ! — OO b [ceN el R en) !
— [— O ~— ~—_— O — O — O ~— —_ 1 O— O — O (_(101010 (_(1010 (_\_(0000 /|\_(\
SN— N— S~— S~— SN— N— N— S~— S~— S— N— N— S~— S~—
—~ —~ — — — —~ — — —~ — — —~ — — — —~ —~ —~ — —~
O™ MmO N AN ODD - NIDODOOMNM | MmN DO 0O~ QNN HO N~
Nee ! Ao oo T ! oo —e ! AT o: ! OO0V M A
N ' Ao~ 0O0 000 'dHo-Ho -0 —0 '{ddoHOoOHOHO 'O -HoOo-HO 00 0ooo 'L 'L
SN— N— N— S~— S~— SN— SN— SN— N— S~— S~— S~— S— SN— N— N— N— S~— S~— S~—
e > x » o2 . 2 2 3 3 3 -
ol el ol = = ol = = = < <
.Infm < < < — — — — — 2 < < < 2 — — — — — < .m .m .m .|.n .I.n @0
: . E e
g g = g 0 0 g - 0 0 g - 1% o 2 o .@
== 1% el m L = 1% = m. g = = = i) = =t = e = o) - < Y 3
xZ = & = £ 2 E E £ 3z £ £ £ 2 3z £ E E E 2 5 ¥ % g £ =€
< [© Q0 ol o] o = 0 o] Q0 = = o o o o = o o o n " ) et % o) o)
— — — — — — — — — — - — — — — — - — - — o — wn — — —

102




US

JP\UK\

|

IT

[ FR | GY |

CN

o T D e T T s s Do T TR T s Tl an T on T T o s s T s Ui en s s T T s T T s D e e T on s

Indicator | Trans. |

O N OO I~ NN TN DV O MO TN OO OO AN T FTNODDON—A NI FONNDOWNVOD 1D~ 001010 D
ST NI FOXMNAOINDIMNMOE AN ANOIN TN NONNNONTNOINONONOIMNMO NSO MEDHD
IO OO 1010100010100 —HOHO10 "0 1T 1010010000011 000DO0ODOOOD
N~— N— ~— ~— ~— ~— ~— ~— N~— N— N— ~— ~— ~— ~— ~— N~— N~— N— ~— ~— ~— ~— ~— N~— N~— N— SN—]
—~ —~ —~ —~ —~ — —~ —~ —~ — — —~ —~ —~ —~ —~ —~ — — —~ — — — — — —~ — —
O I OO A NN O TN TN LTOAN~ID O~ O AN OO A =D FO I~ AN OO~ A= O~ D
SOOI T NNOON AN VO AN TR TORN—ANR OO AN TN AONMOOINO~ OO0 D
— OO0 H OO 1O 1010010101010 —10HO000 101000 HOHO1000O IO A0 OO0~
N— N— ~— ~— ~— ~— ~— ~— N~— N— N— ~— ~— ~— ~— ~— N~— N— N— ~— ~— ~— ~— ~— ~— N— N— SN—]
— — —~ — — — — — — —~ — —~~ —~ — — —~ — —~ —~ — —~ — — — —
TN O N A ON IO FO OO~ A OO MNVOIFONIDO  —~ ~OVI A ONI~FINOD  —DHDO~-NOD
DA A DNHNVOXOMNO TNV TRO IO MM~ ' ' TOODOMARNOI~-0VOSHOD ! OO !
S0~ 40—~0 -0 -0~ 0—“0 -0 -0 -0~ 'L d o000 oo 'dAo—~ o~
N— N— N~— N~— S~— S~— S~— N— N— N— N— S~— S~— N~— S~— SN— N— N~— S~— S~— S~— SN— N— N— N—|
— — — —~ — — —~ — — — —~ — — — —~ — — —~ — —~ — —~ — — o
N D OO MM O~ - OO NN O TN =IO AN NNODON D — —~NONNA NN N  —~F1O DO 0 0
AN OMNO NN OMOXN—TROVAFRNORADR—ADSTMN D ' ' TORODSWOomMmMaod ! 'oadFOD
A" A OoO A Oo 0 —~“0 -0~ 0~ 0“0 —~0 -0 —00—0 'd'ddio-do0 oo -0 -0 'ddooco—~O
N— N— S~— S~— S~— S~— SN— N—r N— N— N— N~— S~— S~— S~— SN— N— S~— S~— S~— S~— SN— N— N— N—r|
— —~ —~ —~ — —~~ —~ —~ — — — —~ —~ —~ —~ —~ —~ — —~ —~ —~ — — — — —~ —~ —~
C O FO NN =IO NN A FO AN OO NDNOOFI~ION N~ FOFNOI~ODNDIDF OO OO IO~ 10 < O I~
0T NN OCOVONOOR OO LA ANTOOMNMO VOV NNV OIN TR AR N0 AD
T O 1000 1O OO0 0010101000000 0101010100000 0101001010000~
N— N— S~— S~— S~— S~— SN— SN— N— N— N— S~— S~— S~— S~— SN— N— N— N— S~— S~— S~— SN— SN— SN— N— N— SN—|
— —~ — —~ — — —~ — — — —~ — — —~ —~ —~ — — —~ —~ — — o
O~ T DO F 0O NOANMNIDOFOV—AFI~O  —~ —~ODDMNN  —~ —~—A 0N NMNMONIFFIF —AN DO ™M — 00
SO MNMAVO—HI-OMovoomoowtfoaNs !PT~ ! !N T OO Wowo— OO OM~I0®©0
cooco o0~ o0 Ao oo Ho -0 ~0o0 oo 'Ll 'L oS0 101000 'L oo —~Oo
N— N— S~— S~— S~— S— SN— SN— N— N— S~— S~— SN— SN— N~— S~— S~— S~— S~— SN— N— N— SN—|
—~ ~~ ~~ ~~ — ~—~ Yo on ~—~ ~— — ~~ ~—~ — ~—~ ~—~ ~~ ~~ — ~~ ~—~ ~—~ ~~ on — on ~—~ s
O NN OO N O I N O AN AN NN FOI~NOOO A I~ O LTI FTNN A FNDOOODINO M I~ 0
A OO NN O A 1O OO T O DTN TNV NOTNNON A AR O A D
O~ 0 NO—~O0—1O0 10 "0 "0 —~T0 0 —10 101000 —~0 10 —0 A0 —~0 "0 —~0 10 —A0 A0 "0 —0O—O
N— N— S~— S~— S~— SN— SN— SN— SN— N— S~— S~— S~— S~— SN— SN— SN— N— N— S— S~— S~— SN— SN— N— SN— N— S—r]

< o, ol o, o, o] o] el = ol = = = = o] el = ol = = = = < o] el

— = S = _ 2 4= 4 - & 4 38 24 4 4 4 4 & 4 & =4 & = = = =

= &) =) ) = =] =) =] =) = = = = = =] =) =) = = = = = =] =)

oV o o N
g 5 § o o 2 9 = = a4 o = = F z T F
2 & & B B B & & = = ¥ B & =& =2 & & & § § 8§ 8§
2 g g = = =2 '3 = = o ) ) ) ) ) ) o
o o © g = = e 0 o, o & & & I g g g g g g g g = £ £ £
B = o () () =i =i =] o o8 ) ) o8 o () o} — —~ —~ —~

103



Table 3, Panel A. (Inflation) Fluctuation Test
(Critical Value = 2.62)

ndicator | Trans. F T

rtbill lev 4.23% 1.30 15.68% 1.74 0.12 3.47%F | 6.41F
rbnds lev - - - - - - - - - - 1.50 4.05*
rbndm lev 1.77 - - - - 0.36 - - - - 2.96*
rbndl lev 4.93* | 4.35% | 6.07* 0.05 0.02 -1.40 3.00*
rovnght 1d 1.76 -0.27 | 9.82%* 1.32 0.49 2.98 | 6.55%
rtbill 1d 3.97* 0.26 | 22.71* | 1247* | 0.05 1.98 4.69*
rbnds 1d -- - - - - - - - - 10.18%* 2.42
rbndm 1d 4.08%* - - - - 0.22 -- -0.42
rbndl 1d 1.82 -0.05 5.44* 0.17 0.10 8.31>|< 3.27*
rrovnght | lev -0.81 0.27 4.87* 0.47 0.45 -1.37 0.44
rrtbill lev 1.06 -0.02 3.80* 0.64 1.75 0.09 0.69
rrbnds lev - - - - - - - - - - 1.71 0.73
rrbndm lev 2.18 - - - - 0.03 -- 1.33
rrbndl lev 2.63* -0.04 7.31%* 0.08 1.93 5. 47* 1.88
rrovnght 1d 3.57* -0.34 9.04* | 8.09* | 15.20* 3.29 3.39*
rrtbill 1d 7.62% | 9.47* | 17.52* | 8.67* | 18.85* | 10.99* 1.49
rrbnds 1d - - - - - - - - -- 17.08* | 10.24*
rrbndm 1d 20.63* - - - - 0.16 -- -- 14.02*
rrbndl 1d 9.29* | 10.37* 7.97 0.23 0.25 8.63* | 20.31*
rspread lev -4.29 0.96 1.13 0.03 17.73* 1.80 2.99*
exrate a | Inld -2.28 - - - - -- - - -- - -
rexrate_a | Inld -0.93 -- -- -- --

stockp Inld -4.33 | 5.48*% | 2.74% | -0.02 0.17 9.31* | 5.94*
rstockp Inld -6.64 | 5.16* 1.77 -0.02 | 3.37*% | 8.98% | 5.34*

rgdp Inld 11.69% | 3.27* | 11.22* 0.57 3.41%* 9.19%* 6.98%*
rgdp gap 12.21*% | 0.93 10.85*% | -0.07 | 11.37* | 12.76* | 5.30%*
ip Inld 4.90* -0.46 9.54* 9.42*% | 13.84* 2.29 9.48%*
ip gap 5.31% -0.81 1.46 -1.33 1.43 3.62%* 8.49%*
capu lev 1.77 0.13 8.15% 2.72% 2.78% | 10.50* | 8.54*
emp Inld 12.20* 1.11 0.84 0.14 2.62%* 8.72% 9.40%*
emp gap 14.26* | 0.28 | 8.66* | 0.23 -0.17 0.83 | 8.49%*
unemp lev 8.93* -0.24 8.18%* -0.05 0.00 5.81% | 6.07*
unemp 1d 12.43* | 3.38%* 9.63* | 10.60* 1.31 8.48%* 7.32%
unemp gap 11.25% | -0.17 | 8.67* 2.21 1.05 | 6.63* | 6.20*
pgdp Inld 3.16* 0.51 1.63 0.25 4.30* 0.55 0.44
pgdp In2d 3.37* -2.99 1.52 0.39 5.54* 0.59 | 15.44%*
cpi Inld - - - - - - - - - - -- --
cpi In2d - - - - - - - - - - - - - -
ppi Inld -0.67 -- 10.64* | 5.95* 0.41 -0.04 -0.73
ppi In2d 10.22* -- 16.30* | 5.31%* 8.46* | 11.53* | 12.78*
earn Inld 2.42 0.44 4.10 -0.30 | 10.88* | 4.52%* 0.29
earn In2d -0.85 0.75 5.86 22.81% | 11.48* 2.22 -0.07
mon( Inld -0.77 - - 0.81 - - - - 8.68% | 4.92*
mon0 In2d 0.94 - - 1.09 - - - - 0.65 5.01°%*
monl Inld -1.39 0.21 4.03* 0.72 1.42 6.26* 5.47*
monl In2d 0.62 7.39* 2.78* 0.39 11.60* 1.15 25.98*
mon2 Inld 4.36* 0.61 3.60%* 0.29 0.24 0.52 5.06*
mon2 In2d 1.73 0.79 0.82 0.29 0.50 12.54*% | 3.73*
monJ Inld 0.42 7.16* 8.38%* 0.28 3.09* 1.45 -0.33
monJ In2d 2.70%* -0.02 1.71 3.04* 1.61 4.13* | 18.62*
rmon0 Inld 9.91%* - - 0.90 - - - - 9.68* 4.42%*
rmonl Inld -0.07 -3.66 9.05%* 1.41%* 5.21%* 0.61 7.65%*
rmon2 Inld 12.59* 0.78 3.36%* 1.40 19.58* | 3.31* 7.7T*
rmonJ Inld 9.74%* 0.11 12.30%* 0.62 4.39* -0.01 6.34*
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Table 3, Panel B. (Output) Fluctuation Test
(Critical Value = 2.62)

ndicator | Trans. F T

rtbill lev 6.10%F [ -2.30 9.06% 0.58 1.60 9.42% 0.95

rbnds lev - - - - - - - - -- 6.93* 1.14

rbndm lev 4.10%* - - - - -0.64 -- -- -0.61

rbndl lev 0.41 -2.00 6.84*% | -7.02 | 6.82* 6.57* -1.63
rovnght 1d 6.73% | -0.20 -0.24 0.54 0.97 8.82*% | 10.57*
rtbill 1d 8.86* | 0.43 0.27 2.49 0.47 3.88*% | 3.45*
rbnds 1d - - - - - - -- - - 17.61 | 6.99*
rbndm 1d 1.55 - - - - -0.23 - - - - 1.93

rbndl 1d 3.14* 1.20 1.02 0.12 3.76* 2.77* 4.44*
rrovnght | lev -1.98 | 045 | 6.83* | 7.24*% | 2.74* 1.57 | -0.56
rrtbill lev 1.60 1.53 4.93* 0.44 2.99* 1.84 -0.21

rrbnds lev - - - - - - -- -- 6.63* | -0.06
rrbndm lev 0.57 - - - - 3.14* - - - - 1.16

rrbndl lev 1.55 1.53 2.51 1.94 6.44* 7.70%* 1.49

rrovnght 1d 3.80* 1.33 7.05%* 0.55 4.05* 0.41 0.96

rrtbill 1d -2.43 0.08 9.58%* 0.54 0.00 -0.02 0.11

rrbnds 1d - - -- - - - - -- 7.22% -0.01

rrbndm 1d 2.31 - - - - 0.25 - - - - 0.04

rrbndl 1d 1.23 0.17 9.13* | 0.19 | 5.06* | 5.50* 0.03

rspread lev 3.23* | 11.61* | 2.26 | 7.82* | 4.36* 0.97 | 10.75*
exrate _a | Inld 3.50% - - - - - - - - - - - -
rexrate_a | Inld -0.17 - - - - - - - - - - - -
stockp Inld 8.56* | 12.09* | 2.76* | 0.05 | 14.45*% | 3.58* | 13.45*
rstockp Inld 8.93* | 9.83* 0.78 0.06 | 9.18* | 7.74* | 14.53*

rgdp Inld - - - - - - - - - - - - - -
redp gap - - - - - - - - - - - - - -
ip Inld 9.20*% | 9.41* 0.88 -1.04 | 13.15* 0.88 9.13*
ip gap -2.05 | 10.92* | -0.28 | -3.94 | 4.53* 1.72 1.34
capu lev 0.43 | 8.08* | 7.05% | -0.41 | 10.05* | 2.78* | 12.19*
emp Inld 3.17% | 5.38%* 6.39%* 2.16 3.66* 1.29 10.48%*
emp gap -0.01 0.13 5.79* 0.85 1.09 1.06 0.62
unemp lev 4.02% | 7.71% | 5.81*% | 4.74*% | 3.14*% | 5.25% | 14.37*
unemp 1d 1.92 8.76%* 7.60*% | 2.81* | 3.24* 3.53*% | 11.53*
unemp gap 0.75 | 8.92* | 6.11* | 0.25 | 4.43* | 5.05*% | 9.21*
pgdp Inld 1.96 -3.61 6.38*% | 7.13* | 8.27* 6.07* 2.17
pgdp In2d 1.72 2.90* | 11.45% | 0.20 | 4.93* 0.08 0.17
cpi Inld 5.81% | 7.82* 9.06* 1.11 2.81%* 8.96*% | 11.47*
cpi In2d -0.76 0.04 9.10* | -0.00 0.79 2.14 0.50
ppi Inld | 3.49% | -- | 13.27% | 3.63% | 1.02 | 6.29% | -0.62
pPpi In2d 6.86%* - - 4.38*% | -1.57 0.51 2.88%* 4.71%*
earn Inld 3.49% | -0.33 5.35% | 9.07* 0.29 6.83* -1.59
earn In2d 3.07* 1.78 1.07 3.07*% | 11.28* | 5.22%* 2.14
mon( Inld 1.63 - - 2.66* -- -- -0.10 | -1.39
mon0 In2d 2.06 - - 2.37 - - - - 9.37* | 17.27*
monl Inld 3.76%* 0.09 25.26* | 2.81%* 1.21 -0.00 1.83
monl In2d 1.11 4.22% |1 13.52* | 0.72 1.11 0.04 1.18
mon2 Inld 3.54*% | -0.04 2.88%* 1.97 | 4.18* 1.16 9.33*
mon2 In2d 7.62% | 7.33* 8.54* 2.28 6.04* | 17.58%* 1.18
monJ Inld 7.64%* 2.61 -0.32 0.84 | 10.30* | 10.44* | -0.28
monJ In2d 3.61*% | 8.80* -0.82 | 7.00*% | 8.23* 0.04 0.47
rmon0 Inld -0.12 - - 1.12 -- -- 4.42*% | 9.02*
rmonl Inld 1.90 4.47*% | 20.01*% | 2.79% | 3.13* 0.02 11.95%
rmon2 Inld 4.54* 1.19 6.87% | 3.99* 1.44 3.45% | 11.74*
rmon3 Inld 2.34%* 0.75 -0.08 1.60 5.68%* 3.67* 9.69*

105



Table 4, Panel A. (Inflation) ENCNEW Test

Indicator [ Trans. | CN [ FR [ GY | IT | JP [ UK [ US
rtbill lev 10.24% [ 14.83% | 5.52% [ 10.49% ] 36.92% | 8.04* [ 55.33%
rbnds lev - - - - - - - - - - 13.65* | 26.38*
rbndm lev 9.20* - - - - 16.43* - - - - 18.60*
rbndl lev 11.73*% | 15.57* | 12.78* | 5.57* | 36.93* | 32.12* | 12.87*
rovnght 1d 1.31 -1.41 7.62*% | -11.74 | 9.57* 4.92*% | 21.93*
rtbill 1d 4.30* -3.42 7.93* 6.22% 0.24 4.86* | 21.81%*
rbnds 1d - - - - - - - - - - 14.30* | 9.96*
rbndm 1d 3.33 - - - - 26.86* - - - - 5.33*
rbndl 1d 6.72%* -6.59 2.76* | 18.54* | 16.67* | 32.39* | 13.67*
rrovnght | lev 5.55% | -6.18 - - -12.40 - - - - - -
rrtbill lev -3.19 6.02*

rrbnds lev - -

rrbndm lev -9.64

rrbndl lev - -

rrovnght | 1d 4.93* -1.05 2.90* 1.66 16.45%*
rrtbill 1d 8.70* 11.45*% | 2.32* 13.20*

rrbnds 1d

rrbndm 1d 20.35%*

rrbndl 1d 14.09*

rspread | lev -2.83 | -5.44 | -3.47 | -0.25 | 34.78%* 30.39*
exrate Inld -1.20

rexrate Inld -1.03 --

stockp Inld 0.83 0.15 5.21% | -7.77 | 5.69% | 24.58* | 5.90*
rstockp Inld 1.49 0.04 2.57* -7.12 13.72*% | 18.44* | 9.25*
rgdp Inld 27.35% | 4.19*% | 21.74*% | -2.58 12.10* | 6.50* | 39.23*
rgdp gap 43.30*% | 9.25* | 33.56* | -4.35 4.58*% | 23.41* | 46.93*
ip Inld 33.32% | -4.23 5.38* | 10.04* | 31.37* | 1.99* | 27.06*
ip gap 34.10*% | 6.40%* 3.40%* 3.62*% | 13.52%* - - 36.12*
capu lev 3.34 | 11.46* | 22.60* | 48.43*% | 31.53* - - 43.82%*
emp Inld 32.69* 1.80 10.73* | -3.17 6.66* - - 49.76*
emp gap 47.01* 0.75 32.24% | -1.36 2.91*% | 25.52* | 54.13*
unemp lev 16.46* | 6.42* | 24.97* | -2.80 -9.69 | 21.16* | 23.96*
unemp 1d 27.06* | 8.34*% | 23.34* | 11.02* | 9.13* | 45.00* | 37.62*
unemp gap 43.13*% | 4.63* | 16.43* | -3.65 7.90*% | 42.24* | 46.61*
pgdp Inld - - -0.89 | -2.17 - - 3.87% | 4.55% - -
pedp m2d | 097 | -143 | -047 | -- | 113 | -154 | 145
cpi Inld - - - - - - - - - - - - - -
cpi In2d - - - - - - - - - - - - - -
ppi Inld 3.60%* -- 2.21 20.44* | 16.54* | 31.83* - -
ppi m2d | 22.31% | -- o |91k | 97.33% | -- | 11a8*
earn Inld 0.65 -5.51 -0.18 9.66* 7.98% 4.28% - -
earn In2d -3.86 -1.91 0.30 6.66* 5.20* 9.31* -0.76
mon0 Inld -4.35 - - 18.24* - - - - 24.17*% | 2.18%*
mon0 In2d -2.76 - - 0.10 - - - - 10.82*% | 2.20*
monl Inld -8.00 -- 3.69* 2.19%* 5.43* -- 12.09
monl In2d -2.10 -- -0.06 -2.12 3.20* -- --
mon?2 Inld 8.33* -- 7.78% -4.51 15.27* | -2.38 2.14*
mon?2 In2d 4.41%* - - -1.85 -2.09 -2.06 9.85* 1.54
mon3 Inld 5.68% - - 1.75 -1.89 -1.83 -0.86 - -
mon3 In2d 2.21 - - -0.68 0.09 -0.29 -0.35 - -
rmon0 Inld 18.34* - - 19.43* - - - - - - - -
rmonl Inld 0.82 - - 8.73* 0.16 | 36.51* - - - -
rmon?2 Inld 48.66* - - 21.77% | -0.84 - - - - 18.66*
rmon3 Inld 50.24* - - 12.30* | -2.90 - - -1.03 - -




Table 4, Panel B. (Output) ENCNEW Test

Indicator [ Trans. | ON FR | GY [ IT | JP | UK US
rtbill lev 44.28% 1 -0.88 [ 24.16% [ -7.88 -2.49 | 33.91% - -
rbnds lev - - - - - - - - - - 28.128 - -
rbndm lev -- -- - - 4.948%* - - - - 20.86*
rbndl lev - - -0.62 | 36.77* | -4.13 1.61 20.83* - -
rovnght | 1d 2.00% | -5.10 | -3.77 | -4.57 0.57 -0.09 - -
rtbill 1d 23.14*% | -5.93 -1.55 -0.46 2.72% | 11.55%* - -
rbnds 1d - - - - -- -- -- 10.02* --
rbndm 1d 12.07* - - - - -2.67 - - - - - -
rbndl 1d 18.18*% | -5.70 | 13.92* | -2.99 | 5.86* | 29.50* - -
rrovnght | lev 7.87*% | 7.14* | 7.33% | 36.20% | -4.36 | -5.11 | -10.31
rrtbill lev 8.40* -7.52 6.45* 0.37 12.17* | -6.29 -2.89
rrbnds lev -- -- - - - - - - 3.91%* 5.24*
rrbndm | lev -7.02 - - - - 12.97* - - - - 35.15%*
rrbndl lev -5.68 | -7.93 | -0.42 | 18.37* | -2.09 | 6.49*% | 35.67*
rrovnght | 1d -0.19 -0.91 1.88 -1.40 -0.68 -2.06 -2.74
rrtbill 1d -1.79 | -1.90 | 3.86*% | -2.27 | -6.31 | -3.57 | -10.16
rrbnds 1d - - - - - - - - - - -0.33 -7.39
rrbndm 1d -0.55 - - - - -0.42 - - - - -5.81
rrbndl 1d -0.71 | -4.95 | 4.50* | 0.32 1.49 | 2.89* -5.00
rspread | lev 20.97% | 10.17*% | -4.62 | 21.57* | -3.85 | -3.52 | 110.47*
exrate In1ld -1.45 - - - - - - - - - - - -
rexrate Inld -1.87 - - - - - - - - - - - -
stockp Inld - - - - 12.02* - - 26.47* | 10.55%* - -
rstockp Inld -- -- 11.70* - - 23.49*% | 16.80* - -
rgdp Inld - - I - - .-
rgdp gap - - - - - - - - - - - - - -
ip Inld - - 8.52%* -3.61 -- 12.79* | -1.33 --
ip gap -2.26 | 10.97*% | -14.04 - - -0.89 | 5.92* - -
capu lev -- 4.95% | 31.07* | -11.16 | 10.74* | 4.15* - -
emp Inld 0.71 6.99*% | 13.31%* - - -0.85 0.06 - -
emp gap | -7.60 | 6.48% | 534% | -- | -1212 | 040 | -7.11
unemp lev 12.48%* - - 26.17* - - 3.23% | 9.97* - -
unemp 1d -3.31 4.17 | 45.44%* - - -1.93 | 6.89* - -
unemp gap -0.09 | 8.42* | 9.57* - - -0.34 | 5.44* - -
pgdp Inld 9.79% -3.20 -0.13 - - 1.87 4.71% | 27.55%
pgdp In2d -0.88 | -0.99 0.58 | 2.91* | -0.03 | -3.04 1.98*
cpi Inld 25.46* | 6.10* | 23.38* | 13.05% | 12.58* | 12.79* | 70.85%*
cpi In2d -1.42 -5.62 4.37* 9.02* -4.86 | 10.84%* 8.71%*
ppi Inld 3.76* - - 18.82* | 11.73* | -10.97 | 8.46%* 34.22%
ppi In2d 0.11 - - -0.17 -3.04 -8.96 0.90 -0.21
earn Inld 4.96%* -2.80 0.87 19.11*% | -4.77 | 18.72* -1.28
earn In2d 0.07 0.18 -1.03 | 13.75* 1.46 -0.14 -1.44
mon0 Inld 2.36 - - 0.47 - - - - -0.15 2.76*
mon( In2d 2.52%* - - 0.84 - - - - 2.11%* 1.91
mon1 Inld 17.68* - - 23.24% | 3.70* -3.67 2.67 0.99
monl In2d 0.49 -- 1.46 -0.79 -3.59 -0.82 0.43
mon2 Inld - - - - -3.21 4.78% 4.74%* -0.96 20.23%*
mon2 In2d -0.30 - - 0.31 -0.85 1.84 0.24 0.05
monJ3 Inld 11.56* - - -4.10 -9.18 | 25.90* | 3.65* -2.29
mond3 In2d 0.20 - - -0.56 -0.76 3.50%* 1.26 -0.20
rmon( Inld 24.91* - - 0.32 - - - - 7.77* | 51.96*
rmonl Inld 36.10%* - - 23.16*% | -0.13 -0.54 1.65 41.18*
rmon2 Inld -1.87 - - 9.88%* 1.46 -8.41 0.19 64.26%*
rmonJd Inld -3.56 - - -1.40 0.93 4.16* | 2.35% | 38.07*




Traditional p-values versus Rossi and Sekhposyan (2011b)

Trans.

Table 5, Panel A. (Inflation) Mincer-Zarnowitz’s (1969) Forecast Rationality Test
ndicator
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Traditional p-values versus Rossi and Sekhposyan (2011b)

Trans.

ndicator

Table 5, Panel B. (Output) Mincer-Zarnowitz’s (1969) Forecast Rationality Test
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Traditional p-values versus Rossi and Sekhposyan (2011b)
Trans.

Table 5, Panel C. (Inflation) Forecast Unbiasedness Test
ndicator
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Table 5, Panel D. (Output) Forecast Unbiasedness Test
Trans.

Traditional p-values versus Rossi and Sekhposyan (2011b)

ndicator
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Table 6, Panel A. (Inflation). Pesaran and Timmermann (2007) & Inoue and Rossi (2010)
Trans.
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Table 6, Panel B. (Output).

Pesaran and Timmerman (2007) & Inoue and Rossi (2010)

Indicator Trans. CN FR GY IT JP UK US
AR rmsfe Inld 2.17 1.50 2.72 5.27 3.34 2.13 2.22
rtbill lev 0.71* 0.93* 0.86* 0.80* 0.71* 0.71* 0.76*
(014) (050) (0.18) (0.00) (0.09) (0.07) (0.11)
rbnds lev -- -- -- -- 0.79* 0.79*
() () () (9 (9 1) (06
rbndm lev 0.76* - - 0.91%* - - - - 0.84*
(0.21 (--) ( ) (0.16) (- -) - - (0.26)
rbndl lev 0.81* 0.94* 0.88* 0.96* 0.81* 0.82* 0.86*
(0.30) (0.57) (0.26) (0.44) (0.13) (0.06) (0.32)
rovnght 1d 0.85* 0.93* 0.89* 0.94* 0.95* 0.92* 0.61*
(0.07) (0.38) (0.02) (0.09) (0.53) (0.01) (0.01
rtbill 1d 0.75* 0.99* 0.89* 0.97* 0.92* 0.82* 0.70*
(0.06) (0.92) (0.07) (0.18) (0.45) (0.01) (0.02
rbnds 1d - - - - - - - - - 0.90* 0.71%
--) (- (- - - (- (0.09) (0.02
rbndm 1d 0.81* -- -- 0.95* -- -- 0.78*
(0.16) (- - (--) (0.14) (--) - - (0.06
rbndl 1d 0.78*% 1.01* 0.82*% 0.98* 0.99* 0.73* 0.77*%
(0.13) (0.90) (0.05) (0.15) (0.95) (0.00) (0.05
rrovnght  lev 0.73% 0.91* 0.91*% 0.78% 0.84% 0.86* 0.91*
(0.07) (0.18) (0.12) (0.07) (0.18) (0.02) (0.14)
rrtbill lev 0.89* 0.96* 0.91* 0.74* 0.82* 0.85* 0.86*
(0.27) (0.52) (0.11) (0.05) (0.20) (0.04) (0.24)
rrbnds lev - - - - - - - - - - 0.80%* 0.85*
) - - - (- (0.00) (0.24)
rrbndm lev 0.95* - - - - 0.74* - - - - 0.79*
(0.26) (--)  (--) (0.05) (--) - - (0.20)
rrbndl lev 0.93* 0.95* 0.88* 0.73* 0.81* 0.76* 0.77*
(0.07) (0.57) (0.03) (0.06) (0.11) (0.00) (0.17)
rrovnght 1d 0.90* 0.97* 0.91* 0.96* 0.97* 0.92% 0.94*
(0.05) (0.02) (0.00) (0.03) (0.01) (0.06) (0.01)
rrtbill 1d 0.92* 1.00* 0.92*% 0.96* 0.94* 0.87* 0.90*
(0.04) (0.95) (0.01) (0.25) (0.05) (0.02) (0.01)
rrbnds 1d - - - - - - - - 0.86%* 0.89%*
- - ) (- -) (--)  (0.03) (0.06)
rrbndm 1d 0.97* - - - - 0.82* -- -- 0.85*
0.14)  (--)  (--) (016) (--)  (--) (0.08)
rrbndl 1d 0.98* 0.99* 0.95*% 0.80* 0.95* 0.83* 0.84*
(0.19) (0.78) (0.01) (0.14) (0.12) (0.01) (0.07)
rspread lev 0.56* 0.87* 0.78% 0.82* 0.97* 0.86* 0.64*
(0.03) (0.26) (0.01) (0.03) (0.46) (0.18) (0.02
exrate Inld 0.96* 0.89* 0.90* 0.85* 0.99* 0.95* 0.92*
(0.03) (0.01) (0.02) (0.01) (0.86) (0.21 (0.34)
rexrate In1d 0.93* 0.88* 0.87* 0.94* 1.00* 0.94* 0.92*
(0.02) (0.01) (0.01) (0.30) (0.99) (0.17 (0.34)
stockp Inld 0.88* 0.91* 0.84* 0.90* 0.80* 0.81* 0.86*
(0.08) (0.11) (0.03) (0.20) (0.00) (0.00 (0.03
rstockp Inld 0.84* 0.91* 0.83* 0.92* 0.81* 0.76* 0.81*
(0.06) (0.14) (0.05) (0.20) (0.00) (0.00) (0.02
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Table 7. Relative MSFE and Equal Predictive Ability Test’s P-value

Model CN FR GY IT JP UK US
Panel A. Inflation
AR RMSFE 1.79 1.68 1.47 3.05 3.15 3.61 2.04
EWA 0.88 1.02 0.88 1.00 0.85 0.80 0.82
(0.01) (0.68) (0.00) (0.50) (0.01) (0.01) (0.00)
BMA 0.96 1.22 0.93 1.20 0.87 0.99 0.94
(0.39) (0.98) (0.18) (0.80) (0.09) (0.48) (0.27)
UCsv 0.93 0.93 0.80 0.82 0.83 0.94 0.84
(0.18) (0.15) (0.01) (0.03) (0.01) (0.25) (0.02)
FAAR 1.06 1.32 0.91 1.66 1.95 1.17 1.30
(0.62) (0.97) (0.26) (1.00) (0.96) (0.81) (0.88)
Panel B. Outpu
AR RMSFE 2.34 1.68 3.38 5.01 3.35 2.51 2.46
EWA 0.92 1.02 0.92 0.98 1.01 091 0.84
(0.01) (0.65) (0.01) (0.41) (0.69) (0.00) (0.01)
BMA 0.96 1.00 0.87 1.13 1.27 0.95 0.98
0.38) (0.49) (0.04) (0.77) (0.96) (0.27) (0.46
FAAR 1.20 1.22 0.97 1.14 0.98 1.36 1.06
(0.92) (0.82) (0.40) (0.75) (0.41) (0.97) (0.61)
Table 8. Giacomini and Rossi’s (2010a) Fluctuation Test
Critical Value = 2.624
Model CN FR GY IT JP UK  US
Panel A. Inflation
EWA 16.82 519 1448 11.60 1289 12.15 10.81
BMA 10.33 0.25 15.65 0.16 13.42 3.87 8.33
UCSV  14.15 18.09 11.31 11.28 14.16 13.72 21.15
FAAR 9.76 -0.83 7.15 -0.02 0.18 040 1.07
Panel B. Output
EWA 13.74 6.88 12.74 833 4.66 14.85 12.96
BMA 9.41 1137 1177 747 203 771 8.36
FAAR 3.77 805 984 746 936 139 6.26
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Table 9, Panel A. (Inflation). Giacomini and Rossi’s (2009)
Forecast Breakdown Test (P-values in Parentheses)
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Table 9, Panel B. (Output). Giacomini and Rossi’s (2009)
Forecast Breakdown Test (P-values in Parentheses)
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Table 10, PanelA. (Inflation) Rossi and Sekhposyan’s (2010) Test

5% Critical Values are: £3.97, +1.96, and £+1.96

Indicator Trans. CN FR GY 1T JP UK US
rovnght lev 584 245 800 234 4.63 4.45 5.07
0.18 1246 -2.14 7.15 0.87 4.28 -1.70
521 -1.82 -0.79 -1.48 1.45 0.76 -0.76

rtbill lev 481 3.46 14.50 5.17 6.03 195 5.53
1.04 19.55 1.35 1.39 -491 3.37 -2.82

204 129 -095 049 152 1.06 0.00

rbnds lev - - - - - - - - - - 551  4.57
- - - - - - - - - - 2.19 -5.97

- - - - - - - - -- 3.72  3.89

rbndm lev 2.57 - - - - 2.91 - - - - 5.67
-1.24 - - - - 11.92 - - - - -4.13

1.75 -- - - 1.30 - - - - 6.10

rbndl lev 3.509 3.68 427 318 223 482 5.65
-1.52 10.38 0.65 393 -1.95 -3.41 -4.02

1.85 1.29 -0.15 1.62 1.43 396 5.10

rovnght 1d 499 280 5.8 242 7778 761 3.75
-4.63 1203 2.72 282 10.08 -0.78 -1.67

272 169 -3.00 1.21 1.29 378 0.73

rtbill 1d 544 4.87 991 226 3.00 2.78 3.38
-0.52 827 279 -2.778 490 7.75 -1.53

249 140 -3.65 0.03 1.74 0.16 1.09

rbnds 1d - - - - - - - - - - 2.44 5.71
- - - - - - - - - - -1.12 -0.64

- - -- - - - - -- 0.95 1.56

rbndm 1d 3.37 -- - - 6.34 -- - - 7.59
2.42 - - - - -2.02 - - - - 2.89

0.22 - - - - 2.01 - - - - 2.82

rbndl 1d 4.85 427 517 6.02 237 487 3.74
-3.04 865 0.22 -295 -6.66 -2.35 2.70

1.86 1.94 1.09 1.98 1.54 0.05 0.22

rrovnght  lev 797 255 519 218 2.69 3.03 4.23
1.56 5.66 236 12.12 -2.89 0.05 -0.12

3.44 1.75 1.97 0.81 1.48 340 1.85

rrtbill lev 338 339 562 299 250 7.15 348
-1.91 538 0.76 526 393 796 1.17

204 264 274 139 1.03 227 1.55

rrbnds lev - - - - - - - - 6.34  3.59
-- -- - - -- -- 7.38 2.11

- - -- - - - - -- 1.01 1.46

rrbndm lev 3.38 - - -- 3.18 - - -- 3.28
-4.38 -- - - 0.51 -- - - 0.52

2.11 - - - - 1.96 - - - - 1.38

rrbndl lev 3.70 3.29 428 3.08 237 7.52 3.20
-0.99 5.06 1.76 1.96 -3.33 -3.86 0.22

2.31 2.63 -1.90 1.74 1.28 0.94 1.25

rrovnght  1d 410 292 477 240 277 534 5.01
-1.05 9.20 4.56 1.45 554 1.75 -8.95

1.31 293 -1.39 026 -152 3.01 2.12

rrtbill 1d 6.26 523 580 5.18 9.38 10.66 3.99
-273 -014 268 -198 1.79 3.08 -7.69

0.31 0.11 -1.50 0.74 0.36 -0.43 2.06
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Indicator Trans. CN FR GY IT JP UK US
rrbnds 1d - - - - - - - - - - 6.69 4.90
- - - - -- - - -- 443 -1.42

- - - - -- - - - - 1.22 2.49

rrbndm 1d 4.74 - - - - 5.80 - - - - 3.00
-3.05 - - - - -3.14 - - - - -1.72
-8.24 - - - - 2.31 - - - - -0.18

rrbndl 1d 4.15 4.53 3.89 5.57 2.32 527 234
-1.07  0.61 1.76 -8.46 0.35 -1.38 -1.52
-1.28  -0.54 -1.07 2.23 1.34 -1.15 -0.18

rspread lev 6.55 3.29 3.74 3.10 443 3.37 6.33
2.96 0.43 -11.58 -2.33 4.83 3.31 0.31
4.50 2.94 2.82 1.60 -0.73 1.19 -0.03

exrate Inld 2.59 4.54 7.90 2.58 6.40 3.75 2.75
-6.35 12.87 10.24 1050 6.84 -1.16 1.59

3.49 1.05 -0.58 1.59 -0.65 3.20 1.56

rexrate Inld 4.82 8.58 6.99 3.33 744 220 2.75
0.91 24.09 6.54 3.84 715 1.72 1.59

520 -1.41 2.94 1.36 -0.32 0.30 1.56

stockp Inld 6.08 5.12 7.20 3.59 554 3.01 4.55
1.84 -18.60 2.36 -1.57 210 -1.36 0.37

4.13 1.40 2.95 2.09 1.82 -1.07 1.45

rstockp Inld 7.43 4.53 6.33 3.65 5.14 3.59 5.19
3.12 -18.30 1.06 -0.68 0.10 1.27 -0.35

3.97 1.39 2.68 2.00 -0.01 -097 224

rgdp Inld 5.77 4.47 6.97 3.30 9.03 396 6.68
9.13 2.71 -8.27 3.97 3.00 224 -0.96

-4.54  1.09 -2.84 2.00 -0.11 090 -1.90

rgdp gap 5.03 5.05 4.42 427 410 4.62 6.68
3.29 -3.18 -0.94 5.20 0.24 254 -5.61

-3.38 224 -3.55 224 -2.10 -2.12 -0.01

ip Inld 10.05 3.28 2.22 7.94 3.94 405 6.36
12.20 2.82 -0.99 -046 -4.71 0.65 1.32

-1.58  2.42 0.59 1.98 -1.51 2.07 -4.09

ip gap 7.42 8.83 2.70 5.80 8.37 4.04 5.09
3.03 -872 -0.13 -0.39 533 198 0.54

-0.32  3.42 1.27 2.70 0.88 1.75 -2.35

capu lev 2.82 2.73 3.27 5.68 2.84 3.37 5.85
2.38 6.76 -0.17 6.74 -5.59 -3.28 -2.03

1.32 1.34 -0.72  -044 151 -0.26 -0.32

emp Inld 15.50 2.41 5.24 291 6.16 4.43 3.73
11.47 5.76 1.16 14.31 -6.78 -0.23 -4.75

-4.73 1.20 1.72 0.66 096 0.72 -0.71

emp gap 6.22 2.72 5.39 4.51 6.06 2.25 3.25
4.79 9.77 0.18 556 -9.94 -2.06 -6.72

-2.91 1.11 -1.48 2.60 2.32 136 -0.03

unemp lev 6.87 5.80 5.88 448 292 550 4.96
0.12 1.30 0.34 -15.20 2.17 1.66 0.44
1.33 2.07 -0.32 2.60 1.71  1.38 10.73

unemp 1d 7.22 6.44 3.12 4.63 6.65 4.95 4.36
1.81 -1.22 -0.89 -15.71 122 024 1.31

-5.13  0.72 -1.02 0.50 0.62 -1.61 -1.90
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Indicator Trans. CN FR GY 1T JP UK US
unemp gap 499 6.24 3.72 2.50 6.35 3.45 7.35
3.62 -0.01 -1.67 -10.28 5.00 3.31 -3.28
-2.09 3.15 -0.87 1.41 1.37 1.23  -0.60
pgdp Inld 498 3.10 4.49 3.27 7.01 4.17  4.43
8.89 6.51 6.74 0.76 -8.01 0.69 1.47
2.76 1.35 2.26 3.12 -0.95 2.20 2.08
pgdp In2d 3.49 5.92 4.62 2.79 5.01 3.75 247
-1.36  5.48  -1.56 6.79 -11.08 -6.01 -2.58
1.19 4.16 2.64 1.58 -040 2.07 0.57
cpi Inld -- -- -- - - -- - - - -
cpi In2d - - - - -- - - - - - - - -
ppi Inld 241  6.55 2.81 4.19 4.94 6.17 2.69
-4.88 -3.47 -0.66 -0.87 7.69 3.22  -0.50
2.46 1.82 1.52 -1.73 1.46 1.76  2.67
ppi In2d 4.79 6.32 1422 2.80 3.42 3.69 6.70
-3.91 -1.44 6.23 -8.17  -6.37 -4.45 -2.04
-1.21 -1.74 1.02 -0.16 -0.57 -0.96 0.09
earn Inld 5.60 4.63 3.52 3.06 2.85 3.90 3.29
1.39 3.79 -1.42 238 -11.20 3.28 3.23
4.17  2.05 2.47 1.92 -0.23 1.65 3.05
earn In2d 449 5.64 6.18 12.46 2.40 7.12  5.67
0.14 17.60 -3.90 6.95 -15.18 4.49 1.85
4.03 281 1.26 -4.27 -0.48 1.44 4.34
mon0 Inld 5.70 - - 3.86 - - - - 2.3  7.46
-0.42 -- -4.29 -- -- -0.62  2.44
3.01 - - 2.46 - - -- 0.45 3.54
mon0 In2d 3.39 -- 4.56 -- - - 4.76  5.11
1.92 - - 3.06 - - -- 0.42 0.04
1.77 - - 1.22 -- -- 2.58 1.28
monl Inld 4.65  3.40 5.43 2.49 3.45 8.37 6.46
0.13 197 -17.69 1.12 1.30 -4.92 9.46
2.81 2.00 2.87 1.97 2.31 0.22 0.36
monl In2d 4.87  2.99 3.71 2.58 2.43 2.34 2.68
0.39 -0.60 -6.22 1.98 -49.96 28.66 -0.33
287 1.13 1.73 1.80 0.36 0.28 -1.21
mon2 Inld 594 3.45 4.01 2.91 4.87 3.02 5.45
443  2.52 -4.35 -3.79 -6.84 -1.44 2.02
3.47 2.04 1.23 1.88 2.13 2.84 2.28
mon2 In2d 4.08 3.92 6.22 2.58 3.30 2.34  2.79
-2.44 1.66 1.87 1.88 0.58 -5.12 -0.56
3.11 1.20 3.31 1.97 1.95 -0.34  1.56
monJ Inld 3.58 3.55 3.31 2.84 2.45 4.65 5.61
2.30 257 -2.62 -3.32 6.43 10.80 2.84
1.92 -1.02 0.57 2.08 1.37 3,55 3.15
mon3 In2d 431 284 6.83 3.14 227 523 745
0.95 -0.14 2206 0.57 -591 3.00 3.49
0.07 2.86 4.31 1.21 1.65 0.00 -9.85
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Table 10, Panel B. (Output) Rossi and Sekhposyan’s (2010) Test
5% Critical Values are: £3.97, +1.96, and £1.96

Indicator Trans. CN FR GY IT JP UK US
rovnght lev 3.58 411 4.09 6.18 2.58 412  4.70
0.71 -0.89 2.22 -6.16 -3.68 2.46 1.35
3.15 1.41 -5.46 2.03 1.51 1.49 -0.99

rtbill lev 3.93 4.04 3.88 4.40 2.78 8.92 5.94
3.40 11.92 -4.12 6.58 3.27 -1.60 0.54

0.26 4.89 -0.81 1.75 1.30 0.79 048

rbnds lev - - - - - - - - - - 5.21 5.66
- - -- - - - - -- -1.86  1.63

- - -- - - -- -- -0.36 0.36

rbndm lev 4.17 - - - - 7.08 - - - - 6.34
2.46 - - - - 0.40 - - - - 5.31

0.87 - - - - 4.52 - - - - 2.16

rbndl lev 6.92 440 4.30 6.78 3.00 778 641
449 9.01 217 -0.82 3.00 -2.03 5.26

2.14 500 -0.30 5.84 1.40 1.30 3.12

rovnght 1d 873 242 552 257 4.85 4.77  5.87
0.57 3.63 227 744 -1.22 8.08 4.99

278 1.29 474 1.18 1.79 0.06 -0.58

rtbill 1d 864 240 6.23 3.11 4.57 251 3.55
1094 322 470 189 -7.28 -1.62 3.14

-6.06 1.06 4.96 0.91 2.43 0.75 0.94

rbnds 1d - - - - - - - - - - 1.96 4.84
- - -- - - -- -- -3.73 177

- - -- - - -- -- 0.60 1.03

rbndm 1d 5.85 -- - - 4.04 -- - - 5.55
8.54 -- - - 0.56 -- - - 2.68

3.20 - - - - 2.34 - - - - 1.06

rbndl 1d 793 227 449 3.89 2.88 9.59 8.05
773 340 -1.20 4.64 499 -4.04 2.87

1.69 096 239 243 0.58 042 0.64

rrovaght  lev 7.00 560 4.16 2.86 2.54 514 3.80
18.10 -6.11 0.82 -6.44 -3.49 -0.95 14.76

-0.12  3.62 -0.50 -0.21 1.92 3.37  2.66

rrtbill lev 466 231 4.83 5.81 5.27 5.09 3.51
242 088 0.73 -2.31 -11.02 -0.02 1.65

267 193 -0.13 3.06 0.35 3.72 204

rrbnds lev - - - - - - - - - - 3.67  3.96
- - -- - - -- -- 213 1.72

- - -- - - -- -- -1.05  2.02

rrbndm lev 3.41 - - - - 3.96 - - - - 3.41
1.19 - - - - 14.61 - - - - 1.39

2.04 - - -- 0.38 - - - - 1.62

rrbndl lev 3.55 234 344 476 2.17 6.72 3.86
-0.31  0.72 0.19 12.26 -1.13 5.42 1.62

1.66 198 242 0.14 0.79 -1.08 1.59

rrovnght  1d 418 3.73 6.16 7.32 3.20 230 4.75
516 7.18 1.97 2.10 598 -2.15 3.33

-0.21 1.67 -0.99 6.79 0.20 1.87 4.20

rrtbill 1d 7.64 343 2.73 2.95 2.99 2.77  3.56
7.32 20.69 4.81 2.13 2147 1.74 -4.22

3.88 1.88 -359 1.95 1.19 2.20 2.71
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Indicator Trans. CN FR GY 1T JP UK US
rrbnds 1d - - - - - - - - - - 3.74  3.60
-- -- -- -- -- 0.93 -1.30
-- -- -- -- -- 0.95 2.49
rrbndm 1d 3.73 - - - - 3.38 - - - - 3.67
1.70 -- --  -461 -- - - 0.22
1.99 -- - - 1.85 -- - - 2.36
rrbndl 1d 3.15 205 429 3.36 591  3.07 3.72
1.61 0.08 -3.63 -4.73 0.99 1.07  -0.55
2.11 199 -2.08 1.92 1.25  0.63 2.37
rspread lev 521 422 448 2.89 3.00 3.01 3.10
-4.18 0.37 238 -3.06 -044 575 -2.52
0.38 0.26 -0.09 0.16 1.72 245 -1.28
exrate Inld 3.25  2.01 9.75 2.58 3.49 262 542
241 1.73 -b5b4 5.06 -7.49 504 -0.54
1.55 1.89 0.63 0.02 3.16 1.25  6.73
rexrate Inld 2.61 280 240 2.72 4.26  3.39 5.42
2.82 023 -1.85 -3.31 -11.23 5.13 -0.54
1.78 2.05 1.64 -0.78 3.67 113 6.73
stockp Inld 3.57 230 4.71 3.62 3.93 718 3.15
0.93 -2.79 -1.27 2.61 -1.88 0.55 -1.46
-0.46 -1.76 0.22 1.82 -455 094 -1.99
rstockp Inld 3.37 2.78 484 3.45 4.23 494 4.24
0.69 -3.17 -2.26 14.06 -2.98 0.40 -2.02
-0.85 -1.56 0.61 125 -2.22 0.02 -2.17
rgdp Inld - - -- - - - - -- - - --
rgdp gap - - - - - - - - - - - - - -
ip Inld 5.73 597 470 3.92 4.54 3.39 4.65
1.23 234 256 431 -436 274 3.74
-2.24 -320 1.72 255 -233 1.14 -0.39
ip gap 5.6 6.14 4.13 3.35 4.64 518 3.07
1.42 335 347 -1.67 -4.05 3.66 3.74
4.82 -1.98 231 4.41 3.13 126 1.78
capu lev 250 294 4.66 3.30 7.89 3.18 5.45
7.59  6.15 5.67 6.52 2.44  0.24 0.12
0.64 126 -1.32 1.75 0.00 0.55 -0.22
emp Inld 530 3.47 6.03 2.30 3.17 266 4.69
-0.32 -1.19 722 -1.77 291 -0.41 5.88
145 030 0.25 1.85 1.31 1.56 0.55
emp gap 4.53 5.68 4.54 4.33 5.40 2,71 2.80
3.30 -0.81 168 -0.15 348 3,50 2.79
3.88 1.86 1.00 3.68 438 1.26 1.68
unemp lev 3.65 3.79 321 3.79 5.53 586 6.60
0.72 -3.06 -548 -0.14 -4.37 -3.34 -1.60
0.35 -0.39 044 0.72 2.76 2.6 0.32
unemp 1d 5.36 4.77 456  3.29 3.69 527 548
9.96 095 -6.13 1.79 4.60 -2.79 1.40
2.16 0.63 -1.69 1.43 1.16  0.96 -2.44
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Indicator Trans. CN FR GY IT JP UK US
unemp gap 5.07 5.62 432 271 438 4.68 5.64
394 356 510 -1.41 1.58 217 0.90
431 026 -0.65 265 223 148 1.37
pegdp Inld 552 6.18 529 333 642 7.05 524
065 -0.71 3.87 3.85 142 -0.82 1.80
1.54 368 079 004 -053 252 141
pegdp In2d 235 658 7.05 349 549 247 3.20
0.40 1.87 -1.44 093 -815 5.10 3.50
1.63 1.79 -0.66 150 282 0.89 201
cpi Inld 6.21 597 504 340 5.69 547 4.11
-1.16 429 2.07 914 -9.21 3.69 2.21
043 239 0.00 058 1.39 0.02 -1.21
cpi In2d 3.61 226 358 344 264 6.74 5.90
4.25 6.48 3.8 3.09 874 313 -584
2.06 1.88 -291 137 080 1.05 3.26
ppi Inld 4.21 519 3.08 492 249 6.86 7.86
-0.25 21.92 -1.97 -1.61 -9.25 537 6.73
275 -2.29 -0.19 3.07 182 2.08 2.89
ppi In2d 6.13 10.02 8.61 3.65 236 260 277
-0.94 459 083 -3.79 239 136 0.44
3.02 000 519 492 071 082 1.58
earn Inld 518 3.13 7.00 346 2.73 6.39 3.77
1.08 554 162 -3.06 442 -094 -6.41
1.99 1.91 032 -0.53 1.39 0.08 3.95
earn In2d 3.92 252 269 747 3.79 6.19 7.34
-147 213 1.63 223 -6.17 7.27 0.85
235 098 184 1.10 -0.34 1.63 3.49
mon0 Inld 6.80 - - 3.52 -- -- 6.41 5.85
14.28 - - -1.73 - - - - -0.01 1.62
1.99 - - 2.20 - - - - 2.31  6.55
mon0 In2d 8.01 - - 4.71 -- - - 277  3.25
3.30 -- 0.47 -- -- 4.78  9.31
1.94 - - 1.45 - - - - -1.04 -1.01
monl Inld 597 365 6.04 754 230 940 3.13
-0.75 295 -0.22 3.75 4.28 33.11 -4.56
0.65 1.92 -450 0.73 189 -0.58 2.77
monl In2d 4.72 266 7.63 236 413 435 6.98
5.62 -3.28 -0.68 1.02 328 K843 14.03
2.11 1.53 -1.09 149 314 149 -0.67
mon?2 Inld 4.46  3.47 453 352 291 251 4.35
331 085 3.15 -3.13 4.08 456 0.12
-5.46 2.68 3.04 079 017 1.74 -0.60
mon?2 In2d 213 475 440 244 329 335 240
061 026 -0.78 -3.53 343 0.00 1.14
066 096 050 1.58 0.31 -0.11 1.68
mon3 Inld 232 355 314 274 478 575 5.26
-4.96 1196 0.18 1.24 -558 -0.08 -0.09
0.88 0.25 3.28 1.58 -1.16 -0.01 5.56
mon3 In2d 6.20 2.69 529 3.64 4.57 3.81 2.15
1.41 1.13 1.01 1.01 -2.55 0.00 1.20
3.62 -1.09 259 133 -2.23 2.59 1.25
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Notes to the Tables.

Table 1 reports, for each predictor and transformation (listed on the first two columns on the
left) and for each country (listed in the columns), the p-value of the Granger-causality for each
predictor as well as the p-values of Rossi’s (2005) Granger-causality test robust to instabilities (eq.
(3), reported in the first and second row for each predictor, respectively). The test statistics are
reported for several countries, listed on the columns. Panel A is for predicting inflation and panel
B is for predicting real GDP growth.

Table 2 reports, for each predictor and transformation (listed on the first two columns on
the left) and for each country (listed in the columns), the value of the ratio of the MSFE for
each predictor relative to the RMSFE of the benchmark model. The p-value of the Diebold and
Mariano’s (1995) test statistic, eq. (41), is reported in parenthesis. The benchmark model is the
autoregressive model, whose RMSFE of the benchmark model is reported in the first row of the
table. The test statistics are reported for several countries, listed on the columns. Panel A is for
predicting inflation and panel B is for predicting real GDP growth.

Table 3 reports, for each predictor and transformation (listed on the first two columns on the
left) and for each country (listed in the columns), the value of the Clark and McCracken’s (2001)
test statistic; asterisks denote significance at the 5% significance level. The benchmark model is the
autoregressive model. The test statistics are reported for several countries, listed on the columns.
Panel A is for predicting inflation and panel B is for predicting real GDP growth.

Table 4 reports, for each predictor and transformation (listed on the first two columns on the
left) and for each country (listed in the columns), the value of the Giacomini and Rossi’s (2010a)
Fluctuation test statistic, eq. (13). The benchmark model is the autoregressive model. The test
statistics are reported for several countries, listed on the columns. Panel A is for predicting inflation
and panel B is for predicting real GDP growth. The 5% critical value is listed on top of the table.

Table 5 reports, for each predictor and transformation (listed on the first two columns on
the left) and for each country (listed in the columns), the p-values of the forecast rationality
test statistic (Panels A and B, for inflation and real GDP growth respectively) and those of the
forecast unbiasedness test statistic (Panels C and D, for inflation and real GDP growth respectively).
Daggers (1) in Panels A and B denote instead rejections at the 5% significance level using Rossi
and Sekhposyan’s (2011b) Fluctuation rationality test statistic, eq. (19), implemented by choosing
gr= [l,yt +h,t] and jointly testing both coeflicients; daggers in Panels C and D denote rejections
of Rossi and Sekhposyan’s (2011b) Fluctuation unbiasedness test, i.e. eq. (19) implemented by
choosing g, = 1. The test statistics are reported for several countries, listed on the columns.

The 5% critical value of the Fluctuation rationality test is 16.90, whereas that of the Fluctuation
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unbiasedness test is 7.1035.

Table 6 reports, for each predictor and transformation (listed on the first two columns on the
left) and for each country (listed in the columns), the ratio of the MSFE of the “Average” forecast
across window sizes (based on Pesaran and Timmermann’s (2007) method, eq. (24)) relative to the
RMSFE of the benchmark model; the p-value of the Diebold and Mariano’s (1995) test statistic is
reported in parenthesis. The benchmark model is the autoregressive model. Asterisks denote 5%
significance of the Inoue and Rossi’s (2010) sup-type test statistic across window sizes (unreported)
implemented using the Clark and McCracken’s (2001) method, 5, i.e. eq. (27). The test statistics
are reported for several countries, listed on the columns. Panel A is for predicting inflation and
panel B is for predicting real GDP growth.

Table 7 reports the values of the ratio of the MSFE for each model listed on the first column
relative to the RMSFE of the benchmark model; the p-value of the Diebold and Mariano’s (1995)
test statistic is reported in parenthesis. The models are: forecast combinations with equal weights
(labeled “EWA”), Bayesian model averaging (labeled “BMA”), Stock and Watson’s (2007) unob-
served components stochastic volatility (labeled “UCSV”) and the factor-augmented autoregressive
model (labeled “FAAR”). The benchmark model is the autoregressive model. The test statistics
are reported for several countries, listed on the columns. Panel A is for predicting inflation and
panel B is for predicting real GDP growth.

Table 8 reports the values of the Giacomini and Rossi’s (2010a) Fluctuation test statistic for
each model listed on the first column: forecast combinations with equal weights (labeled “EWA”),
Bayesian model averaging (labeled “BMA”), Stock and Watson’s (2007) unobserved components
stochastic volatility (labeled “UCSV”) and the factor-augmented autoregressive model (labeled
“FAAR”). The benchmark is the autoregressive model. The test statistics are reported for several
countries, listed on the columns. Panel A is for predicting inflation and panel B is for predicting
real GDP growth. The 5% critical value is listed on top of the table.

Table 9 reports, for each predictor and transformation (listed on the first two columns on the
left) and for each country (listed in the columns) the value of Giacomini and Rossi’s (2009) forecast
breakdown test statistic (p-values are reported in parentheses below the statistics). Panel A is for
predicting inflation and panel B is for predicting real GDP growth.

Table 10 reports, for each predictor and transformation (listed on the first two columns on
the left) and for each country (listed in the columns), the values of the FS;A), FgDB) and FSDU) test
statistics corresponding to the decomposition in Rossi and Sekhposyan (2010), egs. (49). The three
test statistics are listed in the first, second and third row, respectively, for each predictor. Panel A

is for predicting inflation and panel B is for predicting real GDP growth.
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8 Figures

Figure 1, Panel A. (Inflation) Granger-causality Tests
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Figure 1, Panel B. (Output) Granger-causality Tests
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Figure 2, Panel A. (Inflation) Robust vs. Traditional Forecast Comparison Tests
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Figure 2, Panel B. (Output) Robust vs. Traditional Forecast Comparison Tests
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Figure 3, Panel A. (Inflation) Traditional In-sample Vs. Out-of-Sample Tests
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Figure 3, Panel B. (Output) Traditional In-sample Vs. Out-of-Sample Tests
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Figure 4, Panel A. (Inflation) Robust In-sample Vs. Out-of-Sample Tests
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Figure 4, Panel B. (Output) Robust In-sample Vs. Out-of-Sample Tests
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Figure 5, Panel A. (Inflation) Fluctuation Tests Across Series
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Figure 5, Panel B. (Output) Fluctuation Tests Across Series
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Figure 6, Panel A. (Inflation) Robust vs. Traditional Forecast Rationality Tests
Mncer-Zamowitz Test (Joint) for Forecasts of cpi (In2d) h=4
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Figure 6, Panel B. (Output) Robust vs. Traditional Forecast Rationality Tests

Mncer-Zamowitz Test (Joint) for Forecasts of rgdp (In1d) h=4
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Figure 7, Panel A. (Inflation) Robust vs. Traditional Forecast Unbiasedness Tests
Mncer-Zamowitz Test (Intercept) for Forecasts of cpi (In2d) h=4
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Figure 7, Panel B. (Output) Robust vs. Traditional Forecast Unbiasedness Tests

Mincer-Zarnowitz Test (Intercept) for Forecasts of rgdp (In1d) h=4
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Figure 8, Panel A. (Inflation) Fluctuation Test on EWA vs. AR Model
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Figure 8, Panel B. (Inflation) Fluctuation Test on BMA vs. AR Model
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Figure 8, Panel C. (Inflation) Fluctuation Test on FAAR vs. AR Model
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Figure 8, Panel D. (Inflation) Fluctuation Test on UCSV vs. AR Model
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Figure 8, Panel E. (Output) Fluctuation Test on EWA vs. AR Model
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Figure 8, Panel F. (Output) Fluctuation Test on BMA vs. AR Model
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Figure 8, Panel G. (Output) Fluctuation Test on FAAR vs. AR Model
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Notes to Figures.

Figure 1 reports scatterplots of the p-values of the traditional Granger-causality tests (on the
horizontal axis) and of Rossi’s (2005) Granger-causality test robust to instabilities (on the vertical
axis). Each dot in the figure corresponds to one of the series that we consider. The dotted lines
represent p-values of 5%.

Figure 2 reports a scatterplot of the p-values of the traditional MSE-t test using Giacomini and
White’s (2006) critical values (on the horizontal axis) and of the Giacomini and Rossi’s (2010a)
Fluctuation test (on the vertical axis).

Figure 3 reports scatterplots of the p-values of the traditional Granger-causality tests (on the
horizontal axis) and of the traditional MSE-t test using Giacomini and White’s (2006) critical values
(on the vertical axis). Each dot in the figure corresponds to one of the series that we consider. The
dotted lines represent p-values of 5%.

Figure 4 reports a scatterplot of the p-values of Rossi’s (2005) Granger-causality test robust to
instabilities (on the horizontal axis) and of Giacomini and Rossi’s (2010a) Fluctuation test (on the
vertical axis). Each dot in the figure corresponds to one of the series that we consider. The dotted
lines represent p-values of 5%.

Figure 5 reports the percentage of predictors whose Giacomini and Rossi’ (2010a) Fluctuation
test is outside the critical value at each point in time.

Figure 6 reports a scatterplot of the p-values of the traditional Mincer and Zarnowitz’s (1969)
tests (on the horizontal axis) and of Rossi and Sekhposyan’s (2011b) Fluctuation rationality test
(on the vertical axis).

Figure 7 reports a scatterplot of the p-values of the traditional forecast unbiasedness tests (on
the horizontal axis) and of Rossi and Sekhposyan’s (2011b) Fluctuation unbiasedness test (on the
vertical axis).

Figure 8 reports plots the Fluctuation test over time for each of the models that we consider.
Panels A-D report results for forecasting inflation, and Panels E-G report results for forecasting

output.
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