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Abstract

The aim of this article is the development of models for converging
economies. After discussing models of balanced growth, univariate models
of the gap between per capita income in two economies are examined. The
preferred models combine unobserved components with an error correction
mechanism and allow a decomposition into trend, cycle and convergence
components. A new type of second-order error correction mechanism is
shown to be particularly useful in this respect. The levels of per capita
income in two economies may be modelled jointly by bivariate conver-
gence models. These models generalise balanced growth models and can be
based on autoregressive or unobserved componenents formulations. Both
approaches provide coherent forecasts but the unobserved components mod-
els also yield a description of trends, cycles and convergence components.
The methods are applied to data on the US and Japan. The generalision
to multivariate series is then set out.

KEYWORDS: Cycles; balanced growth; error correction mechanism;
stochastic trend; unobserved components.

1. Introduction

The aim of this paper is to suggest models for converging economies, set out es-
timation procedures and apply them to real data. The prefered models combine
unobserved components with an error correction mechanism and allow a decom-
position into trend, cycle and convergence components. This provides insight into
what has happened in the past and gives a coherent procedure for the prediction
of future observations.



The starting point is the literature on convergence. Barro and Sala-i-Martin
(1992) adopted a cross-sectional approach to determine whether the growth rate
of a country depended on the gap between its income per capita and that of
the US. Subsequently many researchers fitted autoregressive time series models
containing a mechanism in which growth effectively depends on the gap. However,
this mechanism was rarely the focus of attention. Instead, the concern was with
tests of convergence ; see, for example, Bernard and Durlauf (1996) and Evans
and Karras (1996).

The way in which structural, or unobserved components (UC), time series
models, can be used to model trends and cycles in multivariate series is set out in
section 2. Issues of stability are then addressed. An understanding of stability is
essential to modelling convergence and the balanced growth models described in
section 2 lay the foundation for much of what is to come later. Section 3 examines
definitions of convergence in the literature and suggests some modifications. Sim-
ply fitting a smooth trend to the difference between two economies is proposed
as a way of establishing stylised facts about convergence. Because the trend is
based on a model, some direct tests on the extent to which convergence has actu-
ally taken place are possible. A dynamic error correction model for convergence
is then proposed and extended so as to incorporate a mechanism which allows
convergence to take place smoothly. These models are fitted to data on GDP in
the US and Japan. The information gained from fitting autoregressive models is
also assessed.

The levels of per capita income in two economies may be modelled jointly by
bivariate convergence models. These models, introduced in section 4, generalise
balanced growth models and can be based on autoregressive or unobserved com-
ponenents formulations. The models for the difference of two economies, set out
in section 3, can be derived from the bivariate models. The properties of the
bivariate models are explored and they are fitted to the Japanese and US series.
Section 5 generalises the ideas of section 4 to more than two series. The properties
of these multivariate models are set out and the implications of various special
cases are explored.

A subsidiary aim of the paper is to clarify the issues involved in testing for
convergence and stability. The questions: Are we in a stable state? and Are we
converging to a stable state? are completely different. It is argued that station-
arity tests are more appropriate than unit root tests when the null hypothesis is
that the series are stable. The unit root tests for convergence are best understood
in the context of a model for the dynamics of convergence of two series. However,



the fitting of models of convergence allows the researcher to address more inter-
esting questions on the speed of convergence and the size of the gap between two
economies which have converged.

2. Structural Time Series Models and Balanced Growth

2.1. Univariate models

The local linear trend model for a set of observations, y;,t = 1,..,T, consists of
stochastic trend and irregular components, that is

yt:Mt+€t, tzl,...,T, (21)

The trend, p, recieves shocks to both its level and slope so

e = He—1+ ﬁtfl + 7 ne ~ N]D(()?O-%)?

B = Brat ¢ ~ NID(0,0%), (22)

where the irregular, level and slope disturbances, €;,7; and (;, respectively, are
mutually independent and the notation NID (0,0?) denotes normally and inde-
pendently distributed with mean zero and variance o2. If both variances 02 and
o} are zero, the trend is deterministic. When only o7 is zero, the slope is fixed

and the trend reduces to a random walk with drift

e = 1 + B+ . (2.3)

Allowing ¢ to be positive, but setting 2 to zero gives an integrated random walk
trend, which when estimated tends to be relatively smooth. The model is often
referred to as the ‘smooth trend model.

The statistical treatment of unobserved component models is based on the
state space form (SSF). Once a model has been put in SSF, the Kalman filter yields
estimators of the components based on current and past observations. Signal
extraction refers to estimation of components based on all the information in the
sample. Signal extraction is based on smoothing recursions which run backwards
from the last observation. Predictions are made by extending the Kalman filter
forward. Root mean square errors (RMSEs) can be computed for all estimators
and prediction or confidence intervals constructed.
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The unknown variance parameters are estimated by constructing a likelihood
function from the one-step ahead prediction errors, or innovations, produced by
the Kalman filter. The likelihood function is maximized by an iterative procedure;
see Harvey (1989). The calculations can be done with the STAMP package of
Koopman et al (2000). Once estimated, the fit of the model can be checked using
standard time series diagnostics such as tests for residual serial correlation.

Distinguishing a long-term trend and from short-term movements is important.
Short-term movements may be captured by adding a serially correlated stationary
component, 1, to the model. Thus

Y=+ te, t=1,...T (2.4)

An autoregressive process is often used for ;. Another possibility is the stochastic
cycle

Wy cos A, sin A, W1 Ky
=p + , t=1,....T,
(0 —sin A\, cos A, (1 Ky (2.5)

where )\, is frequency in radians and ; and k; are two mutually independent white
noise disturbances with zero means and common variance 2. Given the initial
conditions that the vector (ty,%;)" has zero mean and covariance matrix o731, it
can be shown that for 0 < p < 1, the process v is stationary and indeterministic
with zero mean, variance o = o2 /(1 — p*) and autocorrelation function

p(t) =p cosA., T=0,1,2 .. (2.6)

For 0 < A\, < m, the spectrum of 1; displays a peak, centered around ., which
becomes sharper as p moves closer to one; see Harvey (1989, p60). The period
corresponding to A is 27/ A.. In the limiting cases when A. = 0 or 7, ¢y collapses
to first-order autoregressive processes with coefficients p and minus p respectively.
More generally the reduced form is an ARM A(2,1) process in which the autore-
gressive part has complex roots. The complex root restriction can be very helpful
in fitting a model, particularly if there is reason to include more than one cycle.

Imposing the smooth trend restriction often allows a clearer separation into
trend and cycle.



2.2. Multivariate models

Suppose we have N time series. Define the vector y; = (yi, .., yne) and similarly
for p,, 1, and ;. Then a multivariate UC model may be set up as

Y= ut+¢t+€t7 Er r~ NID(O,ZE), t= ]_,...,T, (27)
where X, is an N X N positive sem-definite matrix.The trend is

By = Bty mwaD(O,En)
/Bt = ﬂt—1+<t7 CtNNID(OaEg);

With 3, = 0, we get the smooth trend model. With ¥ = 0, we get the random
walk plus drift.
The similar cycle model, introduced by Harvey and Koopman (1997) is

P, cos A\, sin . Y, 4 Ky
= |p ®IN + N t:1,...,T,
V) —sin). cos Yi Ki (2.8)

where 1, and ] are N x 1 vectors and k; and k; are N X 1 vectors of the
disturbances such that

E(kk}) = E(nffif') =Y., E(ntnf) =0, (2.9)

where Y, is an N x N covariance matrix. The model allows the disturbances to
be correlated across the series. Because the damping factor and the frequency, p
and A, are the same in all series, the cycles in the different series have similar
properties; in particular their movements are centred around the same period.
This seems eminently reasonable if the cyclical movements all arise from a similar
source such as an underlying business cycle. Furthermore, the restriction means
that it is often easier to separate out trend and cycle movements when several
series are jointly estimated.

2.3. Example: US and Japan

Models with smooth trends were fitted to the logarithms of quarterly, seasonally
adjusted, data on real GDP per capita in the US and Japan over the period 1961:1
to 2000:1.The data were obtained from the OECD Main Economic Indicators and



the population series was constructed from annual data by repeating each annual
observation four times and then applying a four quarter moving average. The
series are in 1990 US dollars; the choice of conversion date affects the gap between
the series, but is otherwise irrelevant.

The cycle fitted to Japan is rather weak in the univariate model. By contrast,
it becomes much more like the US cycle in the similar cycle bivariate model.
Table 1 shows the estimates of the parameters, together with the standard error
(SE) for each equation and the Box-Ljung statistic, Q(P), based on the first P
residual autocorrelations. The correlations between the slope, cycle and irregular
disturbances were -0.143, 0.274 and 1 respectively. The period of 27.07 quarters

corresponds to 6.77 years.
TABLFE 1 Bivariate Model

Hyperparameters Japan Us
Trend oc(x1073) 1.638 0.907
Cycle 0,(x1073) 7177 7.642
oy (x1073) 17.22 18.34
Pe 0.91 0.91
Period (2m/)\.) 27.07 27.07
Irregular o.(x1073) 4.380 0.174
Fit log 082.343
SE(x107%) 11144  9.058
Diagnostics Q(11) 11.766  14.719

The cycles shown in figure 2.1 are for the bivariate model. Their presence
means that the trends are quite smooth. However, it is clear that the forecasts
will diverge as there is virtually no growth in Japan at the end of the series.

2.4. Stability and balanced growth

The balanced growth UC model is a special case of (2.7):
ye = iptoa + Y, tey, t=1,..T, (2.10)

where p; is a univariate local linear trend, i is a vector of ones, and a is an N x 1
vector of constants. If y, is initialised with a diffuse prior, then a@ must be subject
to a constraint so it contains only N — 1 free parameters, for example there may
be one zero entry. Alternatively, po may be set to zero. Note that although the
levels may be different, the slopes are the same, irrespective of whether they are
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Figure 2.1: Trends and cycles from a bivariate structural time series model

fixed or stochastic. In terms of (2.7), the matrices 3, and 3. are of rank one,
since they are ¥, = o2ii’ and ¥ = o¢ii’ respectively.

A balanced growth model implies that the series have a stable relationship over
time. This means that there is a full rank (N — 1) x N matrix, D, with no null
columns and the property that Di = 0, thereby rendering Dy, jointly stationary.
The rows of D may be termed balanced growth co-integrating vectors. Typically
each row will contain a one, a minus one and zeroes elsewhere. For example, one
country may be used as a benchmark or numeraire.

If the series are stationary in first differences, balanced growth may be incor-

porated in a vector error correction model (VECM) by writing

p
Ayt =0+ PDyt,1 + Z (I):Ayt—r + £t7 Var(ﬁt) = 25
- (2.11)

where the ®¥s are N x N matrices, D is as defined in the previous paragraph and
the matrix I' is N x (N —1). The system has a single unit root, guaranteed by the
fact that Di = 0. The constants in d contain information on the common slope,
0, and on the differences in the levels of the series, as contained in the vector c.
These differences might be parameterised with respect to the contrasts in Dy, ;.
For example if Dy, has elements y;; — y;41¢,% = 1,.., N — 1, then «;, the i — th
element of the (N — 1) x 1 vector a, is the gap between y; and y; 1. In any case,
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0 =p(I- 15:1 ®%)i — I'ae. Estimation by OLS applied to each equation in turn is
fully efficient since each equation contains the same explanatory variables.

A UC balanced growth model in which the common trend is a random walk
plus drift may be approximated by (2.11); Koopman and Harvey (2001) show
how to compute the coefficients. This can be useful as a baseline for forecasting
and for giving initial estimates of some parameters. However, the VECM does
not provide the description that can be obtained by extracting unobserved com-
ponents. Furthermore, an autoregressive approximation to a UC model with a
smooth trend will typically require too many lags to be viable.

2.5. Stability tests

Bivariate stability tests are testing whether two nonstationary series are evolving
in such a way that their difference is stationary. Multivariate tests are testing
whether all pairs have stationary differences.

The test of stability is carried out by applying the multivariate stationarity
test to Dy,. The test has the rejection region

n(N—-1)=tr [ST'C] >, (2.12)
where
T i i ! T
C=T7" Z Z et] [Z et] and S =71 Z e, . (2.13)
i=1 | t=1 t=1 =1

where ¢, = Dy, — Dy. Under the null hypothesis, the limiting distribution of
n(N — 1) is Cramér-von Mises with N — 1 degrees of freedom, CoM (N — 1).

The test can be modified so as to include a nonparametric correction for serial
correlation as in Nyblom and Harvey (2000). This is a generalisation of the
univariate test of Kwiatkowski et al (1992). When the test statistic uses the first &
sample autocovariances to compute the long-run variance it will be written n(N —
1; k). Parametric adjustments can also be made. The choice of D is not crucial
since pre-multiplication of Dy, by a non-singular (N — 1) x (N — 1) matrix leaves
the test statistic unchanged. Kuo and Mikkola (2001) argue that the multivariate
n test is attractive for testing whether groups of countries exhibit purchasing
power parity because it accounts for cross-sectional correlation and is invariant to
the benchmark currency.

If there are no constant terms in (2.10), that is a = 0, the series contain an
identical common trend. Stability tests can be carried out with this restriction
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imposed and the distribution of the (N —1) statistic is CvMy(N —1) ; see Hobijn
and Franses (2000). An LR or Wald test of the identical trends restriction, cc = 0,
can be readily carried out; the asymptotic distribution of the test statistic under
the null hypothesis is x% ;. However, the test may be done without fitting a
model since the variance of the mean of Dy, - the long-run variance of y; - is
27F(0), where F(0) is the (multivariate) spectrum of Dy, at frequency zero. This
can be estimated nonparametrically as in the multivariate stationarity test. Such
a test should logically come after the CoM;(NN — 1) test has indicated stability.

3. Convergence

3.1. Definitions of convergence and their implications for testing

Two countries have converged if the difference between them is stable. If initial
conditions are unimportant, stability implies that the difference between the series,
yi, is stationary for virtually the whole period. If the mean of y; is zero the
countries are in a state of absolute convergence. If the mean, «, is not zero we have
conditional or relative convergence; this is a possibility if we entertain the existence
of increasing costs of convergence and possible barriers to absolute convergence.
The limiting growth paths for the regions are then parallel, differing by «.

Although they sometimes purport to be testing whether economies are con-
verging, most ‘convergence tests’ are actually testing stability. This is consistent
with the view of Bernard and Durlauf (1996 p 170) who state that the time se-
ries approaches to convergence check for the compatibility of the difference in
(log) output with an indeterministic stationary series. Furthermore Bernard and
Durlauf (1996 p 171) point out ‘In time series tests, one assumes that the data
are generated by economies near their limiting distributions and convergence is
interpreted to mean that initial conditions have no ( statistically significant) effect
on the expected value of output differences.” In most applied studies the conver-
gence tests are unit root tests, usually (augmented) Dickey-Fuller. However, if it
is stability which is being tested, stationarity tests are arguably more appropri-
ate. It is interesting that Hobijn and Franses (2000) use stationarity tests but
then add to the confusion by saying that they are testing whether the countries
“are converging”.

If all that can be managed is stability tests, it is a pity, because this is not
addressing any questions on the process of convergence. Data on countries often
shows that they are converging, have just converged or have converged some time



ago but still have a large part of the series dependent on initial conditions. This
is certainly the case with the US and Japan and the null hypothesis of stability
is easily rejected even though there apears to have been convergence towards the
end of the sample: n(1;4) = 2.56 and 7(1;8) = 1.47, while the 5% critical value
is 0.461.

Bernard and Durlauf ( 1996) offer a definition of ‘convergence as catching up’
over the period t to t + 7. This is based on information, I;, at time ¢ and is

E(yr 1) <y (3.1)

Implementation of this definition requires a model, which can be univariate if I;
is just the series itself. However, if the model is thought of as being made up
of a long-run underlying component, u,;, and a short-run transient component,
then the condition is seen to be inadequate and it may be violated because of an
unusually pronounced short-run component at time ¢. Within such a framework
a better definition of catching up over the period ¢ to t 4 7 is

B, 1) < E(ulL) (3.2)

Catching up can be assessed after the event by defining convergence to have taken
place over a particular time period if

Bl Ir) < BGullr), t+7<T. (3.3)

The next sub-section looks at how convergence in the sense of (3.3) can be
assessed. The issue of whether two economies have converged absolutely can also
be addressed by asking whether the estimate of E(ur|Ir) is significantly different
from zero. The models used do not necessarily satisfy the long-run definition of
convergence given in (3.4) below, though as will be seen in sub-section 3.3 there
is a connection.

If a model is fitted, it will imply convergence to a fixed level, a, if

lim By, /1) = a (3.4)

Convergence is absolute if & = 0 as in Bernard and Durlauf (1996). If the initial
condition is positive (negative), that is po > 0 (o < 0), we might add the
requirement o < po (@ > po). The models set up in sub-section 3.3 are able
to satisfy this condition and they become stationary for economies which have
converged. Within this modelling framework it can be seen that particular forms
of unit root tests are appropriate for testing hypothesis concerning the process of
convergence.
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US-Japan Gap, Smooth Trend and Error BandT
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Figure 3.1: US-Japan gap modelled by a smooth trend

3.2. Direct tests based on unobserved components models

Suppose we wish to look at stylised facts without positing a particular mechanism
for convergence. The difference, ¥, is assumed to be made up of a stochastic trend
or level, p, together with other components such as cycle and irregular as in (2.4).
The smoothed estimates of the trend describe the time path reflecting the long-
run difference between the two economies. Simply plotting this time path may be
very informative. For example, figure 3.1 shows the difference in the trend of per
capita GDP between the USA and Japan obtained by fitting a smooth trend, that
is with o2 set to zero', plus cycle model using the STAMP package of Koopman
et al (2000). We can go further and carry out tests of whether the gap between
the two economies has narrowed significantly and/or whether the gap is zero, that
is pup = 0, indicating that absolute convergence has taken place. The result can
be seen from the graph where a confidence interval of two RMSE’s is shown. The
level in the trend at the end of the sample is 0.230 with a RMSE of 0.032 giving
a ‘t —value’ of 7.10. Although Japan came close to catching up with the USA in
the early 1990’s the movement since then has been in the opposite direction.
The above test of absolute convergence was carried out simply by comparing
the estimate of pp with its RMSE. This information is readily available from the

ITf the level variance is not set to zero, the trend reduces to a random walk plus drift and
the cycle effectively disappears.
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output of the Kalman filter. More generally, if there are N series we can model
them all or we can model a set of N — 1 contrasts, Dy,, where the matrix D is
defined as in the sub-section on stability tests. A multivariate test of the absolute
convergence hypothesis, Dy, = 0, can be easily constructed and treated as having
an asymptotic distribution under the null which is x% _,. For given values of the
parameters in the model of all N series, the test will be invariant to the choice of
D.

Relative convergence can be assessed by testing the null of no change in the
difference between two economies after a certain point. A test of this kind requires
that we assess the significance of the underlying change in the series between time
t = 7 and time ¢ = T'. This requires estimating the temporal (level) contrast, p,—
pr, and its root mean square error (RMSE). The RMSE is most easily obtained
by setting up a fixed-point smoother to calculate the estimator of the contrast,
firir — firir; see Harvey and Bernstein (2001). A test of significance, possibly
one-sided, can be carried out by comparing the temporal contrast test statistic

AriT — AT
RMSE(firr — firyr)

(3.5)

with a standard normal distribution.

Temporal contrasts can also be used to measure the extent to which there has
been catching up in the sense of (3.3).

The use of non-stationary components to model convergence is apparently
contradictory since once convergence has taken place the series are stationary.
The next sub-section sets out stable models for y; instead of approximating it by
a stochastic trend.

3.3. Modelling the dynamics of converging economies

An error correction mechanism (ECM) can be used to capture convergence dynam-
ics. Time series tests of whether economies are converging can then be formulated
within this framework. This reflects a view that modelling comes before testing
and that testing in a vacuum is not very informative.

The simplest model is

Yy = @+ [Uy, e = Qpy—1 +1n, t=1,...T, (3.6)

with a fixed initial value, ug. The crucial point is that this is not constructed as
a model of a stable contrast but rather as a model of transitional dynamics in a
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situation where the initial value is some way from zero. If ¢ < 1, the gap tends
to narrow over time. It makes little sense to have ¢ negative and for 0 < ¢ < 1,
the model satisfies all the definitions of convergence given sub-section 3.1. Of
course when the initial conditions have worked themselves out, the series becomes
stationary. The equivalent error correction (EC) representation for p is

Ay =(-Dypr—a)+m=86+ (- Dy 1+m, t=2,..T,
(3.7)

where § = «a(1 — ¢), and this can be interpreted as saying that, for data in
logarithms, the expected growth rate in the current period is a negative fraction
of the gap between the two economies after allowing for the permanent difference,
a. For example, with ¢ = 0.98 and a ratio of 1.65 in income per head, which
corresponds to a gap in logarithms of 0.5, the difference in growth rates is 1%.
Some idea of what different values of ¢ imply about the closing of the gap can
be obtained by noting that the 7—step ahead forecast from an AR(1) model is ¢”
times the current value. Thus ¢” is the fraction of the gap expected to remain
after 7 time periods. Table 2a shows some values of ¢".

Writing the model in EC form accords with the notion of convergence in the
cross-sectional literature, as expounded by Barro and Sala-i-Martin (1992) and
others, except that there the growth rate is taken to be a linear function of the
initial value, giving a model which is internally inconsistent over time; see Evans
and Karras (1996, p 253).

The ECM may be generalised to allow for richer dynamics. Within an au-
toregressive framework, (3.7) may be augmented with lagged values of differenced
observations. Fitting such a model to the US-Japan series without the constant
gave

Ay, = —0.0086y,_1 + 0.127Ay,_1 + 0.083Ay;,_s + 0.136 Ay + 0.128 Ay;_4,

The equation standard error, denoted SE ( equal to &, here ) is 0.0126 and Q(11),
the Box-Ljung statistic based on 11 residual autocorrelations, is 7.29%. With a
constant added to the right hand side

Ay, = 00029 —0.0156y,_; +0.118Ay,; +0.076Ay_; +0.133Ay,_s +0.127Ay,_4,
(0.0019) (0.0056) (0.081) (0.083) (0.083) (0.083)

2Under the null hypothesis of correct specification, the asymptotic distribution is xZ.
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with SE = 0.0125 and Q(11) = 6.84. The estimate of ¢ has fallen from 0.991 to
0.984. The ‘t—statistic’ of the constant is 1.54 and the implied value of « is 0.187.
None of the lagged differences is statistically significant at the 5% level. With no
lags, the estimate of ¢ was 0.979 and the implied value of a was 0.143. However,
there was evidence of residual serial correlation with Q(11) = 25.14.3

With a constant included, the ADF t-statistic is -2.77. The null hypothesis
of no convergence cannot be rejected if we use the 5% (asymptotic) critical value
of -2.90. This is clearly absurd if we look at figure 3.1. As Bernard and Durlauf
(1996, p 172) say..* time series results accepting the no convergence null may be
due to transitional dynamics..”. Dropping the constant, on the other hand, gives
an ADF' t-statistic of -2.57 which is significant since the (asymptotic) critical
value is -1.95.

Rather than simply carrying out a test, we might wish to put a confidence
interval around the rate at which convergence is taking place. The evidence in
Stock (1991) indicates that such intervals could be rather wide.

3.4. Unobserved components

The UC approach is to add cycle and irregular components to the error correction
mechanism. This avoids confounding the transitional dynamics of convergence
with short-term steady-state dynamics. Thus

Y = a+ g + P+ &y, pe = Qg1 +mn, t=1,...,7T. (3.8)

Estimation is effected by using the state space form with a diffuse prior for pu; (
as though it were nonstationary). Although « is regarded as a fixed parameter, it
can also be estimated by including it in the state vector with a diffuse prior. Care
must be taken as a is not identified when ¢ is unity; one option is to carry out
numerical optimisation with a transformation, such as — log(1—¢) lying between 0
and oo, which keeps ¢ strictly less than one. Nevertheless, as the appendix shows,
it may still be difficult to estimate a accurately. A likelihood ratio test of the null
hypothesis that o = 0 can be carried out, but in order to ensure comparability of
likelihood the one for the unrestricted model must be calculated by treating « as
being fixed.

3Under the null hypothesis of correct specification, the asymptotic distribution is x2,. The
1% significance value is 23.2
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Smoother transitional dynamics can be achieved by specifying p; in (3.8) as

My = ¢Mt—1+ﬁt—l; tzl,...,T,
B = b1+ G

If we write the model as what might be termed a second-order EC model,

Ay = (=D 1+ 5 a1, t=1,..,T, (3.9)
AB = (¢—1)Bio1 + ¢,

it can be seen that there is a convergence mechanism operating on both the gap
in the level and the gap in the growth rate. Alternatively this second-order ECM
can be expressed as

Apy = —(1— ¢)2Ht71 AV

showing that the underlying change depends not only on the gap but also on the
change in the previous time period. This means that changes take place more
slowly.

The model is equivalent to an AR(2) process with both roots equal to ¢.
Obviously the condition for stationarity is |¢| < 1. The variance is [(1 4 ¢?)/(1 —
¢*)’|o. With a value of ¢ close to one, y; will behave in a similar way to the
smooth trend shown in figure 3.1. On the other hand, the first-order ECM behaves
rather like a random walk specification and tracks the observations closely, leaving
little scope for the addition of short-term non-transitional components. The ACF
of the model is

p(r) = [+ {(1 — 3)/(1 + ¢D)}]67,
so the decay is slower than in an AR(1) with the same value of ¢. For the smooth
convergence model the /—step ahead forecast function, standardised by dividing
by the current value of the gap, is fryqr = (1 + c¢f)¢’,£ = 0,1,2,.. where c is a
constant which depends on the ratio, A, of the gap in the previous time period

to the current one, that is A = ur 1/pur. Since the one-step ahead forecast is
2¢ — ¢?), it follows that ¢ = 1 — @A, so

ﬁT+E|T = (1 + (1 - ¢)‘)€)¢£7 = 07 17 27 ..

If A =1/¢, the expected convergence path is the same as in the first order model.
If X is set to 2/(1 + ¢?), the convergence path is the same way as the ACF. In
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CONVERGENCE PATHS
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Figure 3.2: Convergence paths for models with smooth convergence dynamics

this case, the slower convergence can be illustrated by noting, for example, that
with ¢ = 0.96, 39% of the gap can be expected to remain after 50 time periods as
compared with only 13% in the first-order case.

The most interesting aspect of the second-order model is that if the convergence
process stalls sufficiently, the gap can be expected to widen in the short run. Figure
3.2 shows some of the paths obtained by fitting various models to data on the US
and Japan; the details of the bivariate models are reported in the next section.

Estimating the first-order UC model, (3.8), resulted in relatively small values
for the cycle and irregular variances. The same thing happened when a random
walk trend was fitted in the preliminary model, instead of a smooth trend. The
dominance of the transitional component over the cycle and irregular means that
the model is not too far from a simple ECM as in (3.7). The convergence pa-
rameter, ¢, is 0.984 for absolute convergence and 0.977 when « is estimated. The
estimate of v is 0.134, but the LR statistic is 3.33 which is not significant against
a X7 distribution. This is perhaps an indication of flatness of the likelihood and
the associated difficulty of estimating the gap acurately.

The second-order convergence model, (3.9), fared much better insofar as it was
able to separate out a cyclical component. The results are shown in table 2. The
smoothed path of i, is very similar to that shown in figure 1. Figure 3.3 shows the
predictions for the series, y;, over a twenty year horizon. These predictions show
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Figure 3.3: Forecasts for convergence model

some influence from the cycle, which is estimated to have a rather high period
of over twelve years. The parameters obtained when the smooth trend was fitted
to give figure 3.1 are shown in the last column. The estimate of o now has a

statistically significant LR statistic of 6.46.
TABLE 2 Smooth Convergence Model

Hyperparameters Absolute Relative Trend
Convergence oc(x1073) 1.933 1.286 1.244
& 0.963 0.943 1 (fixed)
Cycle ,o(x1079) 11.33 11.51 11.25
Pe 0.94 0.96 0.95
Period (2m/)\.) 50.51 50.14 50.91
Irregular o.(x1073) 0.014 0.071 1.54
Gap o 0 (fixed) 0.180 -
Fit log L 454.679 457.909 451.94
SE(x1073) 12.7 12.4 12.8
Diagnostics Q(11) 11.54 10.85 9.37
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4. Bivariate models for the levels of converging economies

The previous section devised a mechanism for capturing convergence between two
economies. This section explores how this mechanism can be incorporated within
a bivariate model for the levels of converging economies. The aim is to be able to
extract trend and convergence components and to formulate forecasts which take
convergence to a common trend into account.

4.1. Bivariate error correction mechanism

A bivariate model for two converging economies can be set up as

Ay = ¢1(Y2-1 — Yre-1) + e (4.1)
Ay = Go(Yre-1 — Y2,0-1) + N2
where y; ; denotes, for example, per capita output for economy ¢ at time ¢. Absolute
convergence and no growth is initially assumed for simplicity. Thus the growth
rate of the first economy depends on the gap between its level and that of the

second economy and vice versa.
The model corresponds to the first-order vector autoregression

yie = (1= ¢)yie-1 + d1y2e—1 + Mue (4.2)
Yoo = Goyre-1+ (1 — P2)yoe1 +m

The roots of the transition matrix

(1= &
@‘{@ 1—@]

are one and 1 — ¢ — ¢». The condition for the second root to lie inside the unit
circle is 0 < ¢1 + ¢ < 2. This being the case, the long-run forecasts converge to
the same value, that is ¢y + (1 — @)yar, since

’}Lrgoq)k:[% 1:%] (4.3)

where ¢ = ¢3/(¢1 + ¢3). This is a standard result in the theory of Markov chains;
see next section.
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The model (4.2) can be premultiplied by a matrix with unit Jacobian thereby
transforming it to

Vit — Y = O(Y1i-1 — Y21-1) + Nt — N

@@: = yq&,tfl + mn:
where ¢ = 1 — (¢1 + ¢2) and

Tpr = Oy + (L — @)y (4.4)

with the disturbance 7,, defined similarly. The first equation is a convergence
mechanism for the difference y; — y9;. In the second equation the weighted sum
follows a random walk and, as is clear from (4.3), this is the growth path to which
the two economies are converging.

Parameterising the model in terms of ¢ and ¢ has some attractions. The
stability condition is |¢| < 1, though it makes little sense to have ¢ negative.
It seems desirable (though not essential for stability) to have 0 < ¢ < 1. This
condition implies that ¢; and ¢ are both greater than or equal to zero. Note that
if = 1, then ¢ is not identified. At first sight there may seem to be a contradiction
in the two parameterisations in that there are two rates of convergence in (4.2).
However, these rates refer to the change in each economy rather than to the change
in the gap.

Benchmark model Setting ¢o = 0 (or ¢; = 0) implies that country one
(two) converges to country two (one), the benchmark country. Provided ¢ is
positive, ¢ = 0 does not imply a second unit root and so a test of this hypothesis
can be based on standard distribution theory. Note that y; ;1 —¥2+_1 is stationary
(the variables are co-integrated) in (4.1).

Trend and constant The model may be extended to include a common
deterministic trend and a constant, «, to allow for relative convergence. Thus

yie = a+ Bt+ py
Yor = [Bt+ po

where

Apy = ¢1(poi—1 — pa—1) + M (4.5)
Apor = ¢a(pri—1 — poe—1) + N
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The gap, ya: — Y11, 18 as in (3.6), except that the sign of « is different (this is more
convenient for what follows). Substituting for py; and po; gives

Ayy = B —dra+ ¢1(Y2—1 — y1-1) + M1 (4.6)
Aysy = B+ doa+ da(y1i—1 — Yo,e-1) + N

Note that the weighted average, (4.4), is a random walk with a drift of # and that
the gap, yar — y1t, satisfies the ECM of (3.7).

4.2. Autoregressive model

The dynamics in (4.6) may be extended by adding lagged differences to the right
hand side of the equations and re-arranging to give

p p
Ay = 61— d1(Y1-1 — You1) + Z ¢J{1rAy1,t—r + Z ¢J{2TA?J2¢—T + e
r=1 r=1

P P
Ayy = 62+ d2(Yre-1 — Y2u-1) + Z B Ay1er + Z B Ay s + Mof4.7)

r=1 r=1

where 6; = (1 — ?Zl(qﬁllj + ¢32j)) + (=1)'¢scr, @ = 1,2. The parameters a and
0§ can be identified from the estimated constants once estimates of ¢; and ¢o
have been obtained. The model belongs to the VECM class of (2.11). The co-
integrating vector is known and ML estimation can be carried out by OLS since
the regressors are the same in each equation. If we were to set a to zero then the
restriction that the slopes are the same would need to be enforced.

In the benchmark model, ¢; is set to zero in one equation and so (3 is identified
from that equation. Using the estimate of §, an estimate of « can extracted from
the estimated constant in the other equation. There should, in theory, be gains
from SURE estimation, although in practice it seems to make little difference here.

A bivariate model was estimated for the US and Japan with p = 4. For Japan
we find ¢; = 0.0184 while for the US, ¢, = —0.0046. The model is stable, but
the negative sign for ¢5 suggests that it should be set to zero, as in a benchmark
model. Indeed the ‘t—statistic’ is only 0.937; recall that this is asymptotically
standard normal provided ¢, is positive. The benchmark model gave an estimate
of ¢1 equal to 0.0176, corresponding to ¢ = 0.9824. From the estimates of the
constants, « and (3 are estimated as 0.140 and 0.0062 respectively. The estimate
of B corresponds to an annual growth rate of 2.6%. Recall that the univariate
estimate of a from modelling the difference as an autoregression was 0.143.
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4.3. Unobserved components

Embedding the ECM within a UC model by adding a cycle and an irregular to
(4.5) gives

Yy = o+ Bt+ e+ Y +ey (4.8)
Yo = Pt o+ P + e

If 41, and 1o, are modelled as similar cycles, as in (2.8), subtracting y;; from yo
in (4.8) gives a univariate model of the form (3.8).

The vector (g, 2¢)’ may be initialised with a diffuse prior in the SSF. The
parameters « and 3 may also be included in the state and initialised with a diffuse
prior, though it order to compare likelihoods they should be treated as fixed. Note
that if ¢; = ¢o = 0, then there is no convergence. The pure trend model of section
2 is obtained provided a = 0. However, the balanced growth model of (2.10) is
obtained if 7;; and 7y, are perfectly correlated with the same variance.

The deterministic trend could be generalised so as to become a smooth stochas-
tic trend, that is ft is replaced by ,utﬂ where AQ,uf = (;. There is no confounding
with the common level of uq; and ps; provided that the initial value of the com-
mon trend level, pf, is set to zero or the initial value of either p; or pg is set
to zero. However, the introduction of the smooth trend is more straightforward
conceptually if a second-order model for the convergence dynamics, generalising
(3.9), is set up. We then have

Yy = o+ pu+ e+ e, (4.9)
Yor = ot + Yo + €2y,
pie = (I —¢1)pre—1 + drpo—1 + Bi—1, (4.10)
B = (1—=01)B1—1+ 01B2-1 + Cius
por = (1 — @a)pioe1+ dapn -1+ Boi1,
DBat (1 = ¢2)Ba—1 + D281 11 + Coy-

Again, if ¢; = ¢ = 0, then there is no convergence but a balanced growth model
is obtained if (3, and ¢y are perfectly correlated with the same variance.
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The model can be re-arranged so as to have two convergence components
defined in terms of deviations from the common trend, that is ,ujt = it — Jiy and

ﬂlt = Bit — B¢t,i = 1,2, where 11, is
Tige = Gpae + (1 — @)puar, (4.11)

and similarly for Bd)t' Then

yi = a(l— 5) + ML + gt + V1 + €11,
yor = —pa+[—¢/(1— @) pl, + pge + o + e,

with

W, = oul, + 5;,%1;
ﬁirt = ¢ﬁir,t—1 + d,t;
Mot = Hot—1 + Bpi—1,
Bot = Bpi—1+ Cots

The second convergence component can be obtained from the first since E/LL +
(1—¢)ub, = 0. Both economies converge to the growth path of the common trend,
except insofar as the first economy is at a constant level, a, above (or below) the
second one. Convergence is at the same rate, ¢.

If the second economy is taken to be a benchmark then ¢, = 0 in the last two
equations of (4.10). In this case ug is a smooth trend. Setting up the model as
in (4.12) with ¢ = 0, focusses attention on the transitional gap between the two
economies as ft1, = f1; — or and ﬂit = (14 — B24. The implied model for yi, — o

is as in (3.8) with y replaced by ul,.

4.4. UC Model for Japan and US

The smooth stochastic trends fitted in section 2 give an indication of the kind of
results which might be expected from a convergence model and they can provide
starting values for some of the parameters. As already noted, it is a limiting case
which results when ¢; = ¢ = 0 and a = 0.

Table 4.1
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Absolute Relative
Hyperparameters Japan US Japan  US

Convergence oc(x107?) 1.466 0.989 1.399 1.007
® 0.969 0.958
Cycle 0. (x1073) 6.932 7.464 9.413 7.681
Pe 0.903 0.892
Period(2m/\.) 24.77 28.67
Irregular 0.(x1073) 4.482  0.521 0 0
Gap a 0(fized) —0.174
Fit log L 988.050 988.766
SE(x107%) 8.9 10.6 8.9 10.6
Diagnostics Q(11) 12.37 1477 1237 14.77

The results of fitting the bivariate convergence model are shown in table 4.1.
The model was estimated with the US taken as the benchmark, with a set to zero
and « unrestricted. When the more general model with no restrictions on ¢; and
¢o was estimated it collapsed to the benchmark model. This is consistent with
what was found when the autoregressive model, (4.7), was fitted.

The main features are:

i) The cycle parameters are similar to those obtained with the bivariate pure
trend model reported in table 2.1 and the fitted cycles seem to provide a more
satisfactory decomposition than was obtained for the univariate model for the
difference.

ii) The estimate of « is of a similar order of magnitude to the one obtained
in the univariate gap model, but it has a smaller estimated standard error, 0.047.
Again there is clear evidence of relative convergence, though the LR statistic is
only 1.432.

iii) The estimated convergence component, ,uL, assigned to Japan, is very
similar to the smoothed gap shown in Figure 3.

iv) Figure 4 shows the forecasts for the two countries. It can be seen that they
converge to the same growth path, u;, but at a constant distance , «, apart. A
value of @ = —0.174 implies that the Japanese level is about 16% below that of
the US. The forecasts from the bivariate ECM will also converge to parallel paths
a similar distance apart.
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Figure 4.1:

5. Multivariate convergence models

The basic multivariate convergence model, allowing for relative convergence and
a common time trend, is

yit:oz,»—i—ﬂt—i—,uit, 221,,N

with

N
it = Zqﬁz’jugptq + 0y, 1=1,..,N (5.1)

j=1

with Zjvzl ¢i; = 1 for i = 1,..., N. This restriction can be conveniently imposed
by setting ¢;; = 1— > i Dij- As will be shown shortly, it ensures that the system
contains a unit root. As the model stands there are N (/N —1) parameters governing
convergence. Re-formulating it as

Apy = Z Gij(tji—1 — pig—1) +mie, 1=1,..,N, (5.2)
J#i
shows how the convergence of the ¢+ — th economy depends on the gap between

it and each of the other N — 1 economies. However, the conditions needed for
stability, that is for convergence to take place, are not obvious.
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In matrix form

Y. = a_‘_ﬁit_l_u’t?
e = dp+m,

with

e =Pp 1 +my, Var(n,) = Xy (5.3)

or

Ap, = (® — I)/J‘tfl + 1y, Var(n,) = 2

Since each row of ® sums to unity, ®i = i. Thus setting A to one in (& — AI)i = 0,
shows that ® has an eigenvalue of one with a corresponding eigenvector consisting
of ones. The other roots of ® are obtained by solving |® — AI| = 0; they should
have modulus less than one for convergence.

If we write

A, = (- Dp,_, +n,

it is clear that the N x 1 vector of weights, ¢, which gives a random walk must
be such that EI(@ — 1) =0'. Since the roots of ® are the same as those of ®, it
follows from writing (& —I)¢ = 0 that ¢ is the eigenvector of ® corresponding
to its unit root. This random walk, 7z, = El,ut, is a common trend in the sense
that it yields the common growth path to which all the economies converge. This
is because lim; ., ¢ = i¢p ; the proof follows along the same lines as that for a
well-known result on ergodic Markov chains as given, for example, in Hamilton
(1994, p681).

The common trend for the observations is a random walk with drift, 5, and
with o’ = 0 each element of o is a deviation from the common trend.

UC models The general formulation of the first-order UC model has

Yio = ; + Bt + g + Y+, 1=1,..,N (5.4)
together with (5.1). In matrix terms, using the notation of (2.7),
Yy = a+pit + p 4P, +ey,
with p, as in (5.3).
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The smooth convergence model is

Vi = a+ ptte,
e = Ppy_y+ B
/Bt = (I)ﬂtfl + Ct

The forecasts converge to those of the smooth common trend, 7z, = aut

For both types of UC model, an LR test of the absolute convergence hypothesis,
that is a = 0, is straightforward with the asymptotic distribution under the null
being x4 _;.

VECM Convergence may be captured by the common trend VECM of (2.11).
The matrix I' contains N(/N — 1) free parameters and these may be estimated
by OLS applied to each equation in turn. The ® matrix of (5.1) may then be
estimated® as it is given by I'D + I. However, there is no guarantee that the
estimate of I will be such NV — 1 of the roots of ® have modulus less than one. If
the vector of gaps, a, is parameterised with respect to the contrasts in Dy,_;,then

§ =p(1- X" @)i- Ta.

5.1. Deviation and benchmark restrictions

If there is symmetry so that ¢;; = ¢;;, the number of parameters is reduced to
N(N —1)/2 and the mean, 17, is a random walk. This follows immediately from
the matrix formulation as ® is symmetric - hence ¢= i. However, the restriction
is not particularly appealing and there is still a large number of parameters.

A better way in which to impose restrictions is to specify a model in terms of
deviations from a weighted average. This happens naturally if deviations (of per
capita income ) in regions from a national average are to be considered. Typi-
cally some regions will be bigger than others and so will receive more weight in
constructing the average. However, in a more general situation we might consider
the weights as giving some indication of influence. Let

N N
ﬁ'wt = E Wi fhit E Wi = 1
i=1 i=1

4We can also directly adopt the parameterisation implicit in the ® matrix. Although this
implies a different set of explanatory variables in each equation, all satisfy the co-integrating
constraints and so OLS is efficient for each equation in turn.
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and set

gbn' :7TZ'+]_—7TZ'UJZ' :77-2(1 —w,)—i—l and (]5@‘ = —7TZ"LUj, Z;éj

(5.5)
Substituting in (5.2) yields
Apyy = m; Z Wi (fit—1 — Pji—1) + Nt
J#i
= (i1 — ﬁw,tfl) + i, t=1,..., N (5.6)

Thus Ap; depends on the gap between its own level and that of the weighted
average. If m; = 0, then p; is a random walk. This might be taken to suggest
that having all the m.s negative is necessary for convergence, but as can be seen
from the bivariate model this is not the case.

If 7, is to be a random walk, then the weights must be such that w'® = w,
that is ) . ¢;;w; = w;,j = 1,.., N. The weights will only satisfy this condition if,
for i =1,..,N, m; = « for w; # 0. This being the case we have w =¢.

In the homogeneous model, when all weights are non-zero and m; = = for
1=1,..,N, we are able to express the model in deviation form,

A(Mz‘t - ﬁqs,t) = ﬂ-(:ui,t—l - ﬁq&,tfl) + Nit — ﬁq&t? i=1,...,N, (5-7)

and any N — 1 of these equations may be combined with the equation for 7, , to
give a complete system. The stability condition® is —2 < 7w < 0.

There are a number of ways to proceed. If both m;s and w}s are treated as
parameters, the model has 2N — 1 parameters for N > 2. For moderate size N
this parameterisation is relatively parsimonious. However, it is more appealing
to focus attention on either the 7s or the wis. If we let the mis be the same,

we can estimate the w)s as 5;8 Including 7, this makes N free parameters in
all. The convergence process is therefore parameterised as ¢;; = —7r_j, i # 7, and

¢ = ™+ 1 — 7p;. Alternatively, we may decide to pre-assign values to the wis
and estimate the N mis. For the case N = 2, these two options are equivalent.

5The matrix iw’ is idempotent (though not symmetric) as its rows are identical and sum
to one. Since its trace is one, it has one root of unity, while the rest are zero. The matrix
® = (1+7)I—miw’ also has a single unit root while the rest are 1+ 7.
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When the /s are different, we can always calculate the implied weights, ¢;, for
the common trend.

The two approaches are mixed if we set w; = 0 for some i's, and let the
corresponding 7.s be free. If n are set to zero, we then, for n < N — 1, have
N —n — 1 wis to estimate, together with n /s and one 7. When n = N — 1, the
benchmark model is obtained. In these cases, w; = aj and the u,s may be put
in deviation form.

Deviations from the mean If we set w; = 1/N, then 7, , is the simple
mean. The implied weights may be found from the 7}s since, provided m; < 0 for
all j, ¢, = (1/m;)/ >_;(1/m;) as is easily seen® from (5.6). If we regard it reasonable
to have 0 < ¢; < 1, then the 7s must be less than or equal to zero. If a m; = 0,
then we get a benchmark model, as ¢;; — 1 as m; — 0. Within the context of (5.6)
a test of m; = 0 can be based on standard distribution theory as m; = 0 does not,
in itself, imply a unit root.

Benchmark model Take (without loss of generality) the Nth country as the
benchmark to which all the countries converge. Then

Apy = mi(fig—1 — pne—1) + 0, t=1,..,N—1,
A,UNt = TNt

where the roots of the transition matrix are one and 7, + 1,7 = 1,..,. N — 1 so
—2<m<0,72=1,..,N — 1 for convergence. Note that this model is a special
case of (5.6) obtained by setting all the weights apart from wy equal to zero.
Since py; is a random walk, we have

A(,Uit - ,UN,t) = Wi(/ii,tfl - ,UN,t—l) + 0 — e, t=1,..,N—1.
(5.8)

A further complication with the deviation model is that if logarithms have
been taken to get the yj,s, then 7, , will not be the same as the the logarithm
of the weighted sum of the original observations. Working in logarithms has no
implications for the benchmark model.

5In matrix terms, ® = I + IIp—7i’, where Il is a diagonal matrix with the elements of 7
on its diagonal. We want to find ¢ such that ®¢= (I +1I D*iﬁl)a = ¢. This can be done by
making the ¢ — th element of ¢ proportional to the inverse of the i — th element of r. We need
to standardise so that the elements sum to one.
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5.2. Autoregressive models

The deviation and benchmark constraints on (5.3) can be incorporated into an au-
toregressive model because y; ¢ 1~V 1,? = 1, .., IV are all co-integrating vectors.
If one is dropped it can be reconstructed as a linear combination of the others.
Thus the I' and D matrices in (2.11) can be formed with suitable constraints.
However, it is more convenient to set up the model as

N o p
Ayie = 6 + Ti(Yit-1 = Yuy1) + Z Z i AYj—r + Mt 1=1,..., N,
j=1 r=1 (5.9)

The parameters may be efficiently” estimated by SURE, although little is likely to
be lost from simply doing OLS and this may be preferable if N is large. From the
estimates of the 6.s we can solve to get 5 and a set of a/s for relative convergence
since

N
8= [1—Z§p:¢jj] —mioy,  i=1,..,N. (5.10)

=1 r=1

In a benchmark model with 7 = 0, there are N — 1 gaps represented by
a;,t =1,...., N — 1. More generally if we want them to be in terms of deviations
from the level of the common trend, they must satisfy ), ¢;0; = 0. Recall that
with a simple mean, EZ is proportional to 1/m;, if all w.s are negative, so that the
equation ). «a;/m; = 0 can be added to those in (5.10).

As N becomes large, the above AR model runs into difficulties because of the
potentially large number of ¢*, parameters, N?p in all.

*
jr

5.3. Unobserved components model

In the autoregressive framework, the natural way to proceed when the restric-
tions in (5.5) are imposed is to estimate 7s for a given set of pre-assigned wis.
An unobserved components formulation, however, requires nonlinear optimisation
with respect to the elements of ®. Since it is unclear what constraints should be
imposed on the 7s, it is relatively more attractive to assume that m; = 7 and to
estimate the ¢, parameters, constraining them to lie between zero and one and
to sum to one. The model can be transformed so as to consist of convergence

TIf the general model, (2.11), can be estimated, a LR, test of the constraints implied by (5.9)
can be carried out.
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processes, ,u;rt,i = 1,..., N, which are deviations from the common trend, 7y,
Then

Yit = @+ Tigy + il Fu Few, =1, N, (5.11)
where g1, = iy — Tty ¢, With
/%T't = ¢,U;r,t—1 + 77;rt> i=1,.,N—-1, o] <1 (5.12)
where ¢ = 1 + 7, the initial conditions are ,u;ro,i =1,..,N — 1, are fixed, and

Trpt = p—1 + B+ -

The N —th economy has been arbitrarily omitted from the convergence equations
in (5.12). It is constructed from the others as

N-1

N-1
P =0y > iply with ¢y=1-Y .
i=1 =1

.. -1 -1 . . .
Similarly ay = —¢un Zf\ill ¢,;. These expressions can be substituted directly
into the measurement equation for yy; in (5.11) above. The extension to smooth
convergence processes is immediately apparent from (4.12).

In the benchmark model, 7, is replaced by py; and we can have different ;s
in (5.12).

6. Conclusions

The paper has set out models for converging economies and explored their im-
plications. The main value of these models lies in the way in which they can
present stylised facts and make coherent forecasts which allow for the way in
which convergence is taking place.

A second-order error correction mechanism allows unobserved components
models to give an informative decomposition into trend, cycle and convergence
components. Univariate and multivariate models can be constructed in this way,
and the issue of absolute and relative convergence may be investigated. Fitting
these models to Japanese and US GDP per capita indicates that, by combining
the information in the two series, the bivariate model can give a better decom-
position. The more general multivariate models offer the opportunity for further
analysis in this direction.
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A. Appendix: Estimation of a relative convergence model

For model (3.6), the log-likelihood is, excluding constants,

T
T 5 1 2
logL:—EIOgU _§;{yt_¢ytl_a(1_¢)}

where 1, like «, is treated as a fixed parameter. Then

Jo=a+ @y —a) /o

b= 3 (i — &) (0 -8) /3 (s - &)

and B
T oYy —

(T-1)(1-9)

where y = Zle ye. If 5 is close to one the second term on the right will be large
if the first and last observations are very different.

Estimating the parameters by a regression based on (3.7) gives similar, but not
identical, results and again the estimator of « is very sensitive to the estimator of

.
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